{"id":"https://openalex.org/W2964157487","doi":"https://doi.org/10.1109/icip.2018.8451589","title":"A Practical Convolutional Neural Network as Loop Filter for Intra Frame","display_name":"A Practical Convolutional Neural Network as Loop Filter for Intra Frame","publication_year":2018,"publication_date":"2018-09-07","ids":{"openalex":"https://openalex.org/W2964157487","doi":"https://doi.org/10.1109/icip.2018.8451589","mag":"2964157487"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2018.8451589","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1805.06121","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090982546","display_name":"Xiaodan Song","orcid":"https://orcid.org/0000-0002-8049-1828"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaodan Song","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069545138","display_name":"Jiabao Yao","orcid":"https://orcid.org/0009-0009-4109-2048"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiabao Yao","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066346370","display_name":"Lulu Zhou","orcid":"https://orcid.org/0000-0002-1029-1038"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lulu Zhou","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100336057","display_name":"Li Wang","orcid":"https://orcid.org/0000-0002-5793-2437"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Li Wang","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021163866","display_name":"Xiaoyang Wu","orcid":"https://orcid.org/0009-0006-1108-3763"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoyang Wu","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100636142","display_name":"Di Xie","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Di Xie","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5085955762","display_name":"Shiliang Pu","orcid":"https://orcid.org/0000-0001-5269-7821"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiliang Pu","raw_affiliation_strings":["Hikvision Research Institute, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Hikvision Research Institute, Hangzhou, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.703,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":40,"citation_normalized_percentile":{"value":0.999865,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"1133","last_page":"1137"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10741","display_name":"Video Coding and Compression Technologies","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/frame-rate","display_name":"Frame rate","score":0.42425218}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7949478},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.73259425},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.73169297},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.6059079},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.5820116},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4627457},{"id":"https://openalex.org/C3261483","wikidata":"https://www.wikidata.org/wiki/Q119565","display_name":"Frame rate","level":2,"score":0.42425218},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.41352737},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4067322},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.35106814},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0892871},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2018.8451589","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1805.06121","pdf_url":"https://arxiv.org/pdf/1805.06121","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1805.06121","pdf_url":"https://arxiv.org/pdf/1805.06121","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.4,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1836465849","https://openalex.org/W2101700394","https://openalex.org/W2146395539","https://openalex.org/W2155893237","https://openalex.org/W2161591461","https://openalex.org/W2167215970","https://openalex.org/W2286365479","https://openalex.org/W2337344472","https://openalex.org/W2477177239","https://openalex.org/W2510648513","https://openalex.org/W2605135468","https://openalex.org/W2612222456","https://openalex.org/W2752154940","https://openalex.org/W2792186562","https://openalex.org/W2949117887","https://openalex.org/W2950094539","https://openalex.org/W2950248853","https://openalex.org/W2952899695","https://openalex.org/W3104540617","https://openalex.org/W3104772632"],"related_works":["https://openalex.org/W4302615923","https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3203142394","https://openalex.org/W3183118997","https://openalex.org/W2917767146","https://openalex.org/W2542937328","https://openalex.org/W2351061015","https://openalex.org/W1974101135"],"abstract_inverted_index":{"Loop":[0],"filters":[1,25],"are":[2,133,154,164,182],"used":[3,39,171],"in":[4,15,58,156,160,180],"video":[5],"coding":[6],"to":[7,21,61,95,102,111,113,124,144,167],"remove":[8],"artifacts":[9],"or":[10],"improve":[11],"performance.":[12],"Recent":[13],"advances":[14],"deploying":[16],"convolutional":[17],"neural":[18],"network":[19],"(CNN)":[20],"replace":[22],"traditional":[23,211],"loop":[24,86],"show":[26],"large":[27],"gains":[28],"but":[29],"with":[30,43,108,116,126,204],"problems":[31],"for":[32,40,52,88,172,198],"practical":[33],"application.":[34],"First,":[35],"different":[36,44,68,117,127],"model":[37,74,107,141,163],"is":[38,50,142],"frames":[41,90,115],"encoded":[42],"quantization":[45],"parameter":[46],"(QP),":[47],"respectively.":[48],"It":[49,100],"expensive":[51],"hardware.":[53],"Second,":[54],"float":[55],"points":[56,152],"operation":[57],"CNN":[59,73,83,106,181],"leads":[60],"inconsistency":[62],"between":[63],"encoding":[64],"and":[65,91,119,131,169,200],"decoding":[66],"across":[67],"platforms.":[69],"Third,":[70],"redundancy":[71,110],"within":[72],"consumes":[75],"precious":[76],"computational":[77],"resources.":[78],"This":[79],"paper":[80],"proposes":[81,92],"a":[82,93,104],"as":[84,135],"the":[85,97,139,161],"filter":[87],"intra":[89,206],"scheme":[94],"solve":[96],"above":[98],"problems.":[99],"aims":[101],"design":[103],"single":[105],"low":[109],"adapt":[112,123],"decoded":[114],"qualities":[118],"ensure":[120,148],"consistency.":[121],"To":[122,147],"reconstructions":[125],"qualities,":[128],"both":[129],"reconstruction":[130],"QP":[132],"taken":[134],"inputs.":[136],"After":[137],"training,":[138],"obtained":[140],"compressed":[143,162],"reduce":[145],"redundancy.":[146],"consistency,":[149],"dynamic":[150],"fixed":[151],"(DFP)":[153],"adopted":[155],"testing":[157],"CNN.":[158,175],"Parameters":[159],"first":[165],"quantized":[166],"DFP":[168,185],"then":[170],"inference":[173],"of":[174,177],"Outputs":[176],"each":[178],"layer":[179],"computed":[183],"by":[184],"operations.":[186],"Experimental":[187],"results":[188],"on":[189],"JEM":[190],"7.0":[191],"report":[192],"3.14%,5.21":[193],"%,":[194],"6.28%":[195],"BD-rate":[196],"savings":[197],"luma":[199],"two":[201],"chroma":[202],"components":[203],"all":[205,210],"configuration":[207],"when":[208],"replacing":[209],"filters.":[212]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964157487","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":1}],"updated_date":"2025-01-03T11:35:59.004186","created_date":"2019-07-30"}