{"id":"https://openalex.org/W2792630206","doi":"https://doi.org/10.1109/icip.2017.8296629","title":"Image level color classification for colorblind assistance","display_name":"Image level color classification for colorblind assistance","publication_year":2017,"publication_date":"2017-09-01","ids":{"openalex":"https://openalex.org/W2792630206","doi":"https://doi.org/10.1109/icip.2017.8296629","mag":"2792630206"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296629","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113556754","display_name":"Thomas L. Fuller","orcid":null},"institutions":[{"id":"https://openalex.org/I184759092","display_name":"Lafayette College","ror":"https://ror.org/036n0x007","country_code":"US","type":"funder","lineage":["https://openalex.org/I184759092"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Thomas L. Fuller","raw_affiliation_strings":["Department of Computer Science, Lafayette College, Easton, PA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Lafayette College, Easton, PA, USA","institution_ids":["https://openalex.org/I184759092"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088544434","display_name":"Amir Sadovnik","orcid":"https://orcid.org/0000-0001-9011-7365"},"institutions":[{"id":"https://openalex.org/I184759092","display_name":"Lafayette College","ror":"https://ror.org/036n0x007","country_code":"US","type":"funder","lineage":["https://openalex.org/I184759092"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amir Sadovnik","raw_affiliation_strings":["Department of Computer Science, Lafayette College, Easton, PA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Lafayette College, Easton, PA, USA","institution_ids":["https://openalex.org/I184759092"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.06,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.564687,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11666","display_name":"Color Science and Applications","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/3107","display_name":"Atomic and Molecular Physics, and Optics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9861,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.4197943}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60645723},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5693116},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.42979813},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.4197943},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38538486},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.38394082}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296629","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1480230340","https://openalex.org/W1596261777","https://openalex.org/W1964639420","https://openalex.org/W1983126287","https://openalex.org/W2059234575","https://openalex.org/W2113137767","https://openalex.org/W2161509693","https://openalex.org/W2162349892","https://openalex.org/W79315950"],"related_works":["https://openalex.org/W3116076068","https://openalex.org/W2951359407","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2229312674","https://openalex.org/W2166024367","https://openalex.org/W2079911747","https://openalex.org/W2058170566","https://openalex.org/W1969923398"],"abstract_inverted_index":{"The":[0],"advancement":[1],"and":[2,114],"proliferation":[3],"of":[4,12,22,30,33,102],"augmented":[5],"reality":[6],"lends":[7],"itself":[8],"to":[9,53,71],"the":[10,20,31,73,77,82,88,91,103],"development":[11],"novel":[13],"techniques":[14],"for":[15,66],"assistive":[16],"technologies,":[17],"especially":[18],"in":[19,43,108],"realm":[21],"computer":[23],"vision.":[24],"By":[25],"enhancing":[26],"a":[27,34],"certain":[28],"part":[29],"view":[32],"person":[35],"with":[36],"visual":[37],"impairment":[38],"we":[39,49,98],"can":[40,106,118],"assist":[41,54,119],"them":[42],"different":[44,64],"tasks.":[45],"In":[46],"this":[47],"work":[48],"develop":[50,99],"an":[51,100],"algorithm":[52,104],"people":[55],"who":[56],"suffer":[57],"from":[58,122],"color":[59,69,83,123],"blindness.":[60,124],"We":[61,79],"first":[62],"examine":[63],"methods":[65],"pixel":[67],"level":[68],"classification":[70,84],"select":[72],"one":[74],"that":[75],"works":[76],"best.":[78],"then":[80],"improve":[81],"rate":[85],"by":[86],"optimizing":[87],"labeling":[89],"over":[90],"whole":[92],"image":[93],"using":[94],"graph":[95],"cuts.":[96],"Finally,":[97],"implementation":[101],"which":[105],"run":[107],"real":[109],"time":[110],"on":[111],"Google":[112],"Glass":[113],"show":[115],"how":[116],"it":[117],"those":[120],"suffering":[121]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2792630206","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-16T01:34:55.988549","created_date":"2018-03-29"}