{"id":"https://openalex.org/W2793270624","doi":"https://doi.org/10.1109/icip.2017.8296603","title":"Elmnet: Feature learning using extreme learning machines","display_name":"Elmnet: Feature learning using extreme learning machines","publication_year":2017,"publication_date":"2017-09-01","ids":{"openalex":"https://openalex.org/W2793270624","doi":"https://doi.org/10.1109/icip.2017.8296603","mag":"2793270624"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296603","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057937760","display_name":"Dongshun Cui","orcid":"https://orcid.org/0000-0002-9703-0120"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Dongshun Cui","raw_affiliation_strings":["Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061746912","display_name":"Guang-Bin Huang","orcid":"https://orcid.org/0000-0002-2480-4965"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Guang-Bin Huang","raw_affiliation_strings":["Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066761950","display_name":"Chamara Kasun Liyanaarachchi Lekamalage","orcid":"https://orcid.org/0000-0002-4078-3877"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"L.L. Chamara Kasun","raw_affiliation_strings":["Nanyang Technological University, Singapore, Singapore, SG"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore, Singapore, SG","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101450276","display_name":"Guanghao Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Guanghao Zhang","raw_affiliation_strings":["Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101655190","display_name":"Wei Han","orcid":"https://orcid.org/0000-0003-0154-5574"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"funder","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Wei Han","raw_affiliation_strings":["Nanyang Technological University, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.673,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.656295,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"1857","last_page":"1861"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.8087265},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.76115584},{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.58736396},{"id":"https://openalex.org/keywords/extreme-learning-machine","display_name":"Extreme Learning Machine","score":0.5580516},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5036432},{"id":"https://openalex.org/keywords/instance-based-learning","display_name":"Instance-based learning","score":0.4152758}],"concepts":[{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.8087265},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7874383},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.76115584},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7490666},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.59957623},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.58736396},{"id":"https://openalex.org/C2780150128","wikidata":"https://www.wikidata.org/wiki/Q21948731","display_name":"Extreme learning machine","level":3,"score":0.5580516},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5405845},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5103182},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5036432},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4512533},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42781642},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.42445043},{"id":"https://openalex.org/C24138899","wikidata":"https://www.wikidata.org/wiki/Q17141258","display_name":"Instance-based learning","level":3,"score":0.4152758},{"id":"https://openalex.org/C17426736","wikidata":"https://www.wikidata.org/wiki/Q419918","display_name":"Histogram of oriented gradients","level":4,"score":0.41512066},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.40354782},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34225416},{"id":"https://openalex.org/C53533937","wikidata":"https://www.wikidata.org/wiki/Q185020","display_name":"Histogram","level":3,"score":0.3129369},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1271902},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0696848},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296603","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1499403091","https://openalex.org/W1565402342","https://openalex.org/W1614900577","https://openalex.org/W1686810756","https://openalex.org/W1956333070","https://openalex.org/W1990938413","https://openalex.org/W1994197834","https://openalex.org/W2002273623","https://openalex.org/W2026131661","https://openalex.org/W2070961462","https://openalex.org/W2102605133","https://openalex.org/W2111072639","https://openalex.org/W2118585731","https://openalex.org/W2118858186","https://openalex.org/W2122040390","https://openalex.org/W2134553237","https://openalex.org/W2139795045","https://openalex.org/W2141125852","https://openalex.org/W2163922914","https://openalex.org/W2408701322","https://openalex.org/W2510550085","https://openalex.org/W3102431071","https://openalex.org/W4394650624"],"related_works":["https://openalex.org/W4321844043","https://openalex.org/W4310801741","https://openalex.org/W4286799911","https://openalex.org/W3196155444","https://openalex.org/W3183560647","https://openalex.org/W3106337462","https://openalex.org/W3042291365","https://openalex.org/W2969890106","https://openalex.org/W2911822711","https://openalex.org/W1789923131"],"abstract_inverted_index":{"Feature":[0],"learning":[1,32,43,53,72,80,106,116,128],"is":[2,12,64,101],"an":[3],"initial":[4],"step":[5],"applied":[6],"to":[7,56,96],"computer":[8],"vision":[9],"tasks":[10],"and":[11,74,108,120],"broadly":[13],"categorized":[14],"as:":[15],"1)":[16,88],"deep":[17,41],"feature":[18,22,31,42,52,71,79,105,115,127],"learning;":[19],"2)":[20,92],"shallow":[21,30,51,126],"learning.":[23],"In":[24,45],"this":[25,46],"paper":[26,47],"we":[27,48],"focus":[28],"on":[29,131],"as":[33,57],"these":[34],"algorithms":[35],"require":[36],"less":[37],"computational":[38],"resources":[39],"than":[40],"algorithms.":[44],"propose":[49],"a":[50,75],"algorithm":[54,129],"referred":[55],"Extreme":[58],"Learning":[59],"Machine":[60],"Network":[61],"(ELMNet).":[62],"ELMNet":[63,83,124],"module":[65,73,81,100,107],"based":[66],"neural":[67],"network":[68],"consist":[69],"of":[70],"post-processing":[76],"module.":[77],"Each":[78],"in":[82],"performs":[84],"the":[85,104,110,114,132],"following":[86],"operations:":[87],"patch-based":[89],"mean":[90],"removal;":[91],"ELM":[93],"auto-encoder":[94],"(ELM-AE)":[95],"learn":[97,112],"features.":[98],"Post-processing":[99],"inserted":[102],"after":[103],"simplifies":[109],"features":[111],"by":[113,118],"modules":[117],"hashing":[119],"block-wise":[121],"histogram.":[122],"Proposed":[123],"outperforms":[125],"PCANet":[130],"MNIST":[133],"handwritten":[134],"dataset.":[135]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2793270624","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2}],"updated_date":"2025-04-23T04:50:36.326963","created_date":"2018-03-29"}