{"id":"https://openalex.org/W2793654633","doi":"https://doi.org/10.1109/icip.2017.8296424","title":"Hyperspectral image super-resolution based on non-factorization sparse representation and dictionary learning","display_name":"Hyperspectral image super-resolution based on non-factorization sparse representation and dictionary learning","publication_year":2017,"publication_date":"2017-09-01","ids":{"openalex":"https://openalex.org/W2793654633","doi":"https://doi.org/10.1109/icip.2017.8296424","mag":"2793654633"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296424","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027073630","display_name":"Xiaolin Han","orcid":"https://orcid.org/0000-0001-9721-5371"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaolin Han","raw_affiliation_strings":["Dept. of Electronic Engineering, Tsinghua Univ., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Dept. of Electronic Engineering, Tsinghua Univ., Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101579038","display_name":"Jing Yu","orcid":"https://orcid.org/0000-0002-2854-8620"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Yu","raw_affiliation_strings":["Faculty of Information Technology, Beijing Univ. of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Faculty of Information Technology, Beijing Univ. of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024318974","display_name":"Weidong Sun","orcid":"https://orcid.org/0000-0002-8931-8407"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weidong Sun","raw_affiliation_strings":["Dept. of Electronic Engineering, Tsinghua Univ., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Dept. of Electronic Engineering, Tsinghua Univ., Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.420976,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":71,"max":75},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12015","display_name":"Photoacoustic and Ultrasonic Imaging","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dictionary-learning","display_name":"Dictionary Learning","score":0.7216846},{"id":"https://openalex.org/keywords/k-svd","display_name":"K-SVD","score":0.62605697},{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.617936},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.47468802}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.93493307},{"id":"https://openalex.org/C2988886741","wikidata":"https://www.wikidata.org/wiki/Q25304494","display_name":"Dictionary learning","level":3,"score":0.7216846},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6686115},{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.66790813},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6611078},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6503445},{"id":"https://openalex.org/C154771677","wikidata":"https://www.wikidata.org/wiki/Q17098361","display_name":"K-SVD","level":3,"score":0.62605697},{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.617936},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.6034657},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.55215937},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.51918614},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.47468802},{"id":"https://openalex.org/C141239990","wikidata":"https://www.wikidata.org/wiki/Q957423","display_name":"Superresolution","level":3,"score":0.47394872},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.4537641},{"id":"https://openalex.org/C138268822","wikidata":"https://www.wikidata.org/wiki/Q1051925","display_name":"Resolution (logic)","level":2,"score":0.44706702},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.32397926},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.24814308},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.06540319},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2017.8296424","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.62,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1971335521","https://openalex.org/W1990231296","https://openalex.org/W2053081714","https://openalex.org/W2092116045","https://openalex.org/W2097259623","https://openalex.org/W2099187016","https://openalex.org/W2100329651","https://openalex.org/W2112447569","https://openalex.org/W2160547390","https://openalex.org/W2162842940","https://openalex.org/W2163886442","https://openalex.org/W2327302159","https://openalex.org/W4292363360"],"related_works":["https://openalex.org/W4245251483","https://openalex.org/W2801169440","https://openalex.org/W2572092625","https://openalex.org/W2509955295","https://openalex.org/W2152958724","https://openalex.org/W2099321050","https://openalex.org/W2008821896","https://openalex.org/W1992008660","https://openalex.org/W1987225540","https://openalex.org/W1778286912"],"abstract_inverted_index":{"Non-negative":[0],"Matrix":[1],"Factorization":[2],"is":[3,44,56],"the":[4,13,17,20,60,73,79,83,90,97,116,132,144],"most":[5],"typical":[6],"model":[7],"for":[8,59],"hyperspectral":[9,30,70],"image":[10,31,86],"super-resolution.":[11],"However,":[12],"non-negative":[14,105],"restriction":[15],"on":[16,35,109],"coefficients":[18],"limited":[19],"efficiency":[21],"of":[22,62,82,101],"dictionary":[23,40,53,64,93],"expression.":[24],"Facing":[25],"this":[26,47],"problem,":[27],"a":[28],"new":[29],"super-resolution":[32],"method":[33,55,100,121],"based":[34],"non-factorization":[36],"sparse":[37,80],"representation":[38],"and":[39,127,135,139],"learning":[41,54],"(called":[42],"NFSRDL)":[43],"proposed":[45],"in":[46,72,131,143],"paper.":[48],"Firstly,":[49],"an":[50],"efficient":[51],"spectral":[52,63,92],"specifically":[57],"adopted":[58],"construction":[61],"using":[65,96],"some":[66],"low":[67],"spatial":[68],"resolution":[69],"images":[71],"same":[74,133],"or":[75],"similar":[76,145],"areas.":[77],"Then,":[78],"codes":[81],"high-resolution":[84],"multi-bands":[85],"with":[87,115],"respect":[88],"to":[89],"learned":[91],"are":[94],"estimated":[95],"alternating":[98],"direction":[99],"multipliers":[102],"(ADMM)":[103],"without":[104],"constrains.":[106],"Experimental":[107],"results":[108],"different":[110],"datasets":[111],"demonstrate":[112],"that,":[113],"compared":[114],"related":[117],"state-of-the-art":[118],"methods,":[119],"our":[120],"can":[122],"improve":[123],"PSNR":[124,136],"over":[125,129,137,141],"1.3282":[126],"SAM":[128,140],"0.0476":[130],"scene,":[134],"3.1207":[138],"0.4344":[142],"scenes.":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2793654633","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-22T07:15:56.289028","created_date":"2018-03-29"}