{"id":"https://openalex.org/W2516731600","doi":"https://doi.org/10.1109/icip.2016.7533034","title":"Efficient parameter optimization for example-based design of nonseparable oversampled lapped transform","display_name":"Efficient parameter optimization for example-based design of nonseparable oversampled lapped transform","publication_year":2016,"publication_date":"2016-08-17","ids":{"openalex":"https://openalex.org/W2516731600","doi":"https://doi.org/10.1109/icip.2016.7533034","mag":"2516731600"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2016.7533034","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5070966533","display_name":"Shogo Muramatsu","orcid":"https://orcid.org/0000-0002-2990-1238"},"institutions":[{"id":"https://openalex.org/I71395657","display_name":"Niigata University","ror":"https://ror.org/04ww21r56","country_code":"JP","type":"funder","lineage":["https://openalex.org/I71395657"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Shogo Muramatsu","raw_affiliation_strings":["Dept. of Electrical and Electronic Eng., Niigata University, Nishi-ku, Niigata, Japan"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical and Electronic Eng., Niigata University, Nishi-ku, Niigata, Japan","institution_ids":["https://openalex.org/I71395657"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087891899","display_name":"Masaki Ishii","orcid":"https://orcid.org/0000-0003-0687-3147"},"institutions":[{"id":"https://openalex.org/I71395657","display_name":"Niigata University","ror":"https://ror.org/04ww21r56","country_code":"JP","type":"funder","lineage":["https://openalex.org/I71395657"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masaki Ishii","raw_affiliation_strings":["Niigata University, Graduate School of Science & Technology, Nishi-ku, Niigata, Japan"],"affiliations":[{"raw_affiliation_string":"Niigata University, Graduate School of Science & Technology, Nishi-ku, Niigata, Japan","institution_ids":["https://openalex.org/I71395657"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100625998","display_name":"Zhiyu Chen","orcid":"https://orcid.org/0000-0001-7937-642X"},"institutions":[{"id":"https://openalex.org/I71395657","display_name":"Niigata University","ror":"https://ror.org/04ww21r56","country_code":"JP","type":"funder","lineage":["https://openalex.org/I71395657"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Zhiyu Chen","raw_affiliation_strings":["Niigata University, Graduate School of Science & Technology, Nishi-ku, Niigata, Japan"],"affiliations":[{"raw_affiliation_string":"Niigata University, Graduate School of Science & Technology, Nishi-ku, Niigata, Japan","institution_ids":["https://openalex.org/I71395657"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.412,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.585783,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"3618","last_page":"3622"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11034","display_name":"Digital Filter Design and Implementation","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.5932227},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.54106736},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.52812135},{"id":"https://openalex.org/C189950617","wikidata":"https://www.wikidata.org/wiki/Q937228","display_name":"Property (philosophy)","level":2,"score":0.51782304},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5109307},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4580807},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.44126573},{"id":"https://openalex.org/C137836250","wikidata":"https://www.wikidata.org/wiki/Q984063","display_name":"Optimization problem","level":2,"score":0.43277985},{"id":"https://openalex.org/C117896860","wikidata":"https://www.wikidata.org/wiki/Q11376","display_name":"Acceleration","level":2,"score":0.4262451},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.12299645},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2016.7533034","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1481646516","https://openalex.org/W1574645113","https://openalex.org/W18046889","https://openalex.org/W1890834058","https://openalex.org/W1985808834","https://openalex.org/W1999174140","https://openalex.org/W2073417610","https://openalex.org/W2099321050","https://openalex.org/W2116148865","https://openalex.org/W2123023890","https://openalex.org/W2128659236","https://openalex.org/W2130187411","https://openalex.org/W2149309436","https://openalex.org/W2163398148","https://openalex.org/W2171879908","https://openalex.org/W2196956961","https://openalex.org/W2216036554","https://openalex.org/W2288303267","https://openalex.org/W2296399167","https://openalex.org/W2605833394","https://openalex.org/W2963322354","https://openalex.org/W340244495","https://openalex.org/W4235713725","https://openalex.org/W4254546220","https://openalex.org/W4300263211"],"related_works":["https://openalex.org/W602859758","https://openalex.org/W4231775656","https://openalex.org/W2776207444","https://openalex.org/W2726447019","https://openalex.org/W2565094479","https://openalex.org/W2390829436","https://openalex.org/W2379101322","https://openalex.org/W1992553864","https://openalex.org/W1989791859","https://openalex.org/W1971289376"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"an":[3],"efficient":[4],"design":[5,33],"method":[6,66,93,108],"of":[7,37,70,105],"nonseparable":[8],"oversampled":[9],"lapped":[10],"transform":[11,18],"(NSOLT).":[12],"NSOLT":[13],"is":[14,43,62,84,94,109],"a":[15],"multidimensional":[16],"redundant":[17],"which":[19,35],"satisfies":[20],"the":[21,48,52,57,64,71,78,81,91,103,106],"nonseparable,":[22],"symmetric,":[23],"real-valued,":[24],"overlapped,":[25],"compact-supported":[26],"and":[27,40,86],"perfect-reconstruction":[28],"property.":[29],"A":[30],"typical":[31],"example-based":[32],"approach,":[34],"consists":[36],"sparse":[38],"coding":[39],"parameter":[41,53],"optimization,":[42],"applicable":[44],"to":[45],"NSOLT.":[46],"In":[47],"previous":[49],"implementation,":[50],"however,":[51],"optimization":[54],"stage":[55],"dominated":[56],"computation.":[58],"The":[59],"main":[60],"reason":[61],"that":[63],"quasi-Newton":[65,92],"with":[67],"numerical":[68],"gradient":[69,83,98],"objective":[72],"function":[73],"was":[74],"adopted.":[75],"To":[76],"reduce":[77],"computational":[79],"cost,":[80],"analytical":[82],"derived":[85],"introduced.":[87],"For":[88],"further":[89],"acceleration,":[90],"replaced":[95],"by":[96],"stochastic":[97],"descent.":[99],"Through":[100],"some":[101],"experiments,":[102],"significance":[104],"proposed":[107],"verified.":[110]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2516731600","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":2}],"updated_date":"2025-03-15T18:17:57.358276","created_date":"2016-09-16"}