{"id":"https://openalex.org/W2517598410","doi":"https://doi.org/10.1109/icip.2016.7532579","title":"Leveraging 2D and 3D cues for fine-grained object classification","display_name":"Leveraging 2D and 3D cues for fine-grained object classification","publication_year":2016,"publication_date":"2016-08-17","ids":{"openalex":"https://openalex.org/W2517598410","doi":"https://doi.org/10.1109/icip.2016.7532579","mag":"2517598410"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2016.7532579","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100424268","display_name":"Xiaolong Wang","orcid":"https://orcid.org/0000-0002-9381-5350"},"institutions":[{"id":"https://openalex.org/I4210133173","display_name":"Research!America (United States)","ror":"https://ror.org/044pgyv50","country_code":"US","type":"company","lineage":["https://openalex.org/I4210133173"]},{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaolong Wang","raw_affiliation_strings":["Samsung Research America"],"affiliations":[{"raw_affiliation_string":"Samsung Research America","institution_ids":["https://openalex.org/I4210133173","https://openalex.org/I4210101778"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5005873257","display_name":"Robert Li","orcid":null},"institutions":[{"id":"https://openalex.org/I4210133173","display_name":"Research!America (United States)","ror":"https://ror.org/044pgyv50","country_code":"US","type":"company","lineage":["https://openalex.org/I4210133173"]},{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Robert Li","raw_affiliation_strings":["Samsung Research America"],"affiliations":[{"raw_affiliation_string":"Samsung Research America","institution_ids":["https://openalex.org/I4210133173","https://openalex.org/I4210101778"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018394419","display_name":"Jon Currey","orcid":null},"institutions":[{"id":"https://openalex.org/I4210101778","display_name":"Samsung (United States)","ror":"https://ror.org/01bfbvm65","country_code":"US","type":"company","lineage":["https://openalex.org/I2250650973","https://openalex.org/I4210101778"]},{"id":"https://openalex.org/I4210133173","display_name":"Research!America (United States)","ror":"https://ror.org/044pgyv50","country_code":"US","type":"company","lineage":["https://openalex.org/I4210133173"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jon Currey","raw_affiliation_strings":["Samsung Research America"],"affiliations":[{"raw_affiliation_string":"Samsung Research America","institution_ids":["https://openalex.org/I4210101778","https://openalex.org/I4210133173"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.331,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.368736,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1354","last_page":"1358"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14339","display_name":"Image Processing and 3D Reconstruction","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73258805},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.51019144},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43801153},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.32787445}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2016.7532579","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.79,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1515999713","https://openalex.org/W1523493493","https://openalex.org/W1530965581","https://openalex.org/W1603508051","https://openalex.org/W1898560071","https://openalex.org/W1972960842","https://openalex.org/W1975517671","https://openalex.org/W2001242835","https://openalex.org/W2001810343","https://openalex.org/W2005876975","https://openalex.org/W2033819227","https://openalex.org/W2050173620","https://openalex.org/W2076562229","https://openalex.org/W2078046525","https://openalex.org/W2091759811","https://openalex.org/W2097117768","https://openalex.org/W2102605133","https://openalex.org/W2104294146","https://openalex.org/W2115706991","https://openalex.org/W2115891208","https://openalex.org/W2117228865","https://openalex.org/W2117259536","https://openalex.org/W2117553576","https://openalex.org/W2134905716","https://openalex.org/W2139212933","https://openalex.org/W2143055991","https://openalex.org/W2150112333","https://openalex.org/W2155839910","https://openalex.org/W2156598602","https://openalex.org/W2167254323","https://openalex.org/W2169488311","https://openalex.org/W2203580091","https://openalex.org/W302237248","https://openalex.org/W4256035763","https://openalex.org/W4297731550","https://openalex.org/W56385144"],"related_works":["https://openalex.org/W4402327032","https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Objects":[0],"in":[1],"fine-grained":[2],"categories":[3],"always":[4],"share":[5],"a":[6,25,124],"high":[7],"degree":[8],"of":[9,39,73],"shape":[10],"similarity,":[11],"making":[12],"both":[13],"\"localizing":[14],"discriminative":[15,44],"parts\"":[16],"and":[17,82],"\"learning":[18,74],"appearance":[19,75],"descriptors\"":[20,76],"extremely":[21],"difficult.":[22],"We":[23],"propose":[24,86],"framework":[26,59],"to":[27,31,42,67,123],"leverage":[28],"2D+3D":[29],"cues":[30],"handle":[32],"above":[33],"two":[34],"challenges.":[35],"Towards":[36,70],"the":[37,71,117],"goal":[38,72],"image":[40,55],"alignment":[41],"localize":[43],"parts,":[45],"traditional":[46],"methods":[47],"rely":[48],"on":[49,131],"either":[50],"manual":[51],"part":[52],"annotation":[53],"or":[54],"segmentation.":[56],"Instead,":[57],"our":[58],"leverages":[60],"each":[61],"image's":[62],"3D":[63],"camera":[64],"pose":[65],"estimation":[66],"align":[68],"images;":[69],"confined":[77],"with":[78],"small":[79],"training":[80],"data":[81],"memory/computation":[83],"cost,":[84],"we":[85],"an":[87],"unsupervised":[88],"Convolutional":[89],"Sparse":[90],"Coding":[91],"(CSC)":[92],"+":[93],"manifold":[94],"learning":[95],"that":[96],"significantly":[97],"reduces":[98],"model":[99],"complexity,":[100],"but":[101],"still":[102],"successfully":[103],"produces":[104],"highly":[105],"diverse":[106],"feature":[107],"filters":[108],"like":[109],"deep":[110,125],"neural":[111],"network.":[112],"Our":[113],"experimental":[114],"results":[115],"attest":[116],"advocated":[118],"framework's":[119],"accuracy":[120],"is":[121],"comparable":[122],"network,":[126],"demonstrating":[127],"its":[128],"great":[129],"potential":[130],"mobile":[132],"devices.":[133]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2517598410","counts_by_year":[{"year":2019,"cited_by_count":2},{"year":2017,"cited_by_count":2}],"updated_date":"2024-12-10T06:58:29.142594","created_date":"2016-09-16"}