{"id":"https://openalex.org/W2048020799","doi":"https://doi.org/10.1109/icip.2014.7026019","title":"Compressive data fusion for multi-sensor image analysis","display_name":"Compressive data fusion for multi-sensor image analysis","publication_year":2014,"publication_date":"2014-10-01","ids":{"openalex":"https://openalex.org/W2048020799","doi":"https://doi.org/10.1109/icip.2014.7026019","mag":"2048020799"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2014.7026019","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.ece.msstate.edu/~fowler/Publications/Papers/PWF2014.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037823063","display_name":"Saurabh Prasad","orcid":"https://orcid.org/0000-0003-3729-9360"},"institutions":[{"id":"https://openalex.org/I44461941","display_name":"University of Houston","ror":"https://ror.org/048sx0r50","country_code":"US","type":"education","lineage":["https://openalex.org/I44461941"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Saurabh Prasad","raw_affiliation_strings":["Department of Electrical and Computer Engg, University of Houston, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engg, University of Houston, USA","institution_ids":["https://openalex.org/I44461941"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100702419","display_name":"Hao Wu","orcid":"https://orcid.org/0000-0001-8899-2734"},"institutions":[{"id":"https://openalex.org/I44461941","display_name":"University of Houston","ror":"https://ror.org/048sx0r50","country_code":"US","type":"education","lineage":["https://openalex.org/I44461941"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hao Wu","raw_affiliation_strings":["Department of Electrical and Computer Engg, University of Houston, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engg, University of Houston, USA","institution_ids":["https://openalex.org/I44461941"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078795882","display_name":"James E. Fowler","orcid":"https://orcid.org/0000-0003-2005-405X"},"institutions":[{"id":"https://openalex.org/I99041443","display_name":"Mississippi State University","ror":"https://ror.org/0432jq872","country_code":"US","type":"education","lineage":["https://openalex.org/I4210141039","https://openalex.org/I99041443"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"James E. Fowler","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Geosystems Research Institute, Mississippi State University, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Geosystems Research Institute, Mississippi State University, USA","institution_ids":["https://openalex.org/I99041443"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.268,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.542209,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":"21","issue":null,"first_page":"5032","last_page":"5036"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Theory and Applications of Compressed Sensing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.992,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.9901,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.768644},{"id":"https://openalex.org/keywords/sensor-fusion","display_name":"Sensor fusion","score":0.7496865},{"id":"https://openalex.org/keywords/compressed-sensing","display_name":"Compressed Sensing","score":0.632694},{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.554441},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.526749},{"id":"https://openalex.org/keywords/hyperspectral","display_name":"Hyperspectral","score":0.515209},{"id":"https://openalex.org/keywords/sparse-approximation","display_name":"Sparse Approximation","score":0.506494},{"id":"https://openalex.org/keywords/random-projection","display_name":"Random projection","score":0.42494884}],"concepts":[{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.864722},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.768644},{"id":"https://openalex.org/C33954974","wikidata":"https://www.wikidata.org/wiki/Q486494","display_name":"Sensor fusion","level":2,"score":0.7496865},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72438806},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.6671259},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6287407},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.6002863},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.5328368},{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.51585835},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.47897103},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.46300653},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.4611509},{"id":"https://openalex.org/C2777036070","wikidata":"https://www.wikidata.org/wiki/Q18393452","display_name":"Random projection","level":2,"score":0.42494884},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.4236266},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42321986},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3662324},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.30989212},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.26789474},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14096504},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.11085963},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07503399},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icip.2014.7026019","pdf_url":null,"source":{"id":"https://openalex.org/S4363607719","display_name":"2022 IEEE International Conference on Image Processing (ICIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.6998","pdf_url":"http://www.ece.msstate.edu/~fowler/Publications/Papers/PWF2014.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.434.6998","pdf_url":"http://www.ece.msstate.edu/~fowler/Publications/Papers/PWF2014.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.8,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1990055659","https://openalex.org/W1997164347","https://openalex.org/W2001380973","https://openalex.org/W2002498099","https://openalex.org/W2011813002","https://openalex.org/W2023471811","https://openalex.org/W2062747674","https://openalex.org/W2074561958","https://openalex.org/W2075394305","https://openalex.org/W2079319869","https://openalex.org/W2084591647","https://openalex.org/W2088658556","https://openalex.org/W2106993026","https://openalex.org/W2107135467","https://openalex.org/W2120636621","https://openalex.org/W2122548617","https://openalex.org/W2149631607","https://openalex.org/W2545589531","https://openalex.org/W2620300926","https://openalex.org/W2979473749","https://openalex.org/W3097609957"],"related_works":["https://openalex.org/W3135825101","https://openalex.org/W3025361498","https://openalex.org/W2727459133","https://openalex.org/W2537887767","https://openalex.org/W2157528709","https://openalex.org/W2134834881","https://openalex.org/W2079763965","https://openalex.org/W2038029906","https://openalex.org/W2022106977","https://openalex.org/W1481995007"],"abstract_inverted_index":{"Multiple":[0],"views":[1,36],"of":[2,61,80],"a":[3,48,55,87,129],"scene":[4],"-":[5,11],"obtained":[6],"via":[7],"different":[8],"sensing":[9,22],"modalities":[10],"have":[12],"the":[13,34,44,59,77,99,119,136],"potential":[14],"to":[15,30,58],"significantly":[16],"enhance":[17],"image":[18],"analysis":[19],"for":[20,101,132,138],"remote":[21],"and":[23,111],"other":[24],"applications.":[25],"This":[26],"benefit":[27],"is":[28,64,67,122],"expected":[29],"be":[31],"significant":[32],"if":[33],"multiple":[35],"are":[37],"providing":[38],"independent,":[39],"yet":[40],"useful,":[41],"information":[42],"about":[43],"underlying":[45],"classes":[46],"in":[47,86,118],"scene.":[49],"To":[50],"exploit":[51],"such":[52],"multi-sensor":[53,62,81],"information,":[54],"compressive-projection":[56],"approach":[57],"fusion":[60,97,134],"imagery":[63],"proposed.":[65],"It":[66],"argued":[68],"that":[69,70,75,115],"random":[71],"projections":[72],"yield":[73],"subspaces":[74],"preserve":[76],"discriminative":[78],"nature":[79],"datasets":[82],"with":[83],"profound":[84],"implications":[85],"practical":[88],"scenario":[89],"wherein":[90],"compressive":[91,142],"measurements":[92],"can":[93],"directly":[94],"facilitate":[95],"data":[96,113],"without":[98,135],"need":[100,137],"complicated":[102],"subspace-learning":[103],"approaches.":[104],"A":[105],"case":[106],"study":[107],"fusing":[108],"experimental":[109],"hyperspectral":[110],"LiDAR":[112],"demonstrates":[114],"statistical":[116],"learning":[117],"compressive-measurement":[120],"domain":[121],"not":[123],"only":[124],"feasible,":[125],"but":[126],"also":[127],"provides":[128],"natural":[130],"framework":[131],"sensor":[133],"explicit":[139],"reconstruction":[140],"from":[141],"measurements.":[143]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2048020799","counts_by_year":[{"year":2019,"cited_by_count":3},{"year":2017,"cited_by_count":1}],"updated_date":"2024-11-18T14:44:08.510118","created_date":"2016-06-24"}