{"id":"https://openalex.org/W2363995139","doi":"https://doi.org/10.1109/icics.2015.7459845","title":"Using wavelet transform self-similarity for effective multiple description video coding","display_name":"Using wavelet transform self-similarity for effective multiple description video coding","publication_year":2015,"publication_date":"2015-12-01","ids":{"openalex":"https://openalex.org/W2363995139","doi":"https://doi.org/10.1109/icics.2015.7459845","mag":"2363995139"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icics.2015.7459845","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027685807","display_name":"Roya Choupani","orcid":null},"institutions":[{"id":"https://openalex.org/I98358874","display_name":"Delft University of Technology","ror":"https://ror.org/02e2c7k09","country_code":"NL","type":"education","lineage":["https://openalex.org/I98358874"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Roya Choupani","raw_affiliation_strings":["Faculty of Electrical Engineering, Delft University of Technology, Delft, Netherlands"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Delft University of Technology, Delft, Netherlands","institution_ids":["https://openalex.org/I98358874"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036463224","display_name":"Stephan Wong","orcid":"https://orcid.org/0000-0003-3521-2612"},"institutions":[{"id":"https://openalex.org/I98358874","display_name":"Delft University of Technology","ror":"https://ror.org/02e2c7k09","country_code":"NL","type":"education","lineage":["https://openalex.org/I98358874"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Stephan Wong","raw_affiliation_strings":["Faculty of Electrical Engineering, Delft University of Technology, Delft, Netherlands"],"affiliations":[{"raw_affiliation_string":"Faculty of Electrical Engineering, Delft University of Technology, Delft, Netherlands","institution_ids":["https://openalex.org/I98358874"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5088971273","display_name":"Mehmet R. Tolun","orcid":"https://orcid.org/0000-0002-8478-7220"},"institutions":[{"id":"https://openalex.org/I121596126","display_name":"Aksaray University","ror":"https://ror.org/026db3d50","country_code":"TR","type":"education","lineage":["https://openalex.org/I121596126"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Mehmet Tolun","raw_affiliation_strings":["Department of Electrical Engineering, Aksaray University, Aksaray, Turkey"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Aksaray University, Aksaray, Turkey","institution_ids":["https://openalex.org/I121596126"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":"93","issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10901","display_name":"Advanced Data Compression Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10741","display_name":"Video Coding and Compression Technologies","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/self-similarity","display_name":"Self-similarity","score":0.5010419},{"id":"https://openalex.org/keywords/packet-loss","display_name":"Packet loss","score":0.46191835},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.45235497}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76085997},{"id":"https://openalex.org/C152124472","wikidata":"https://www.wikidata.org/wiki/Q1204361","display_name":"Redundancy (engineering)","level":2,"score":0.6646902},{"id":"https://openalex.org/C46286280","wikidata":"https://www.wikidata.org/wiki/Q2414958","display_name":"Discrete wavelet transform","level":4,"score":0.5967531},{"id":"https://openalex.org/C103910844","wikidata":"https://www.wikidata.org/wiki/Q2631256","display_name":"Video quality","level":3,"score":0.54961205},{"id":"https://openalex.org/C2776459999","wikidata":"https://www.wikidata.org/wiki/Q2119376","display_name":"Fidelity","level":2,"score":0.54413366},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.5439394},{"id":"https://openalex.org/C119453123","wikidata":"https://www.wikidata.org/wiki/Q262372","display_name":"Self-similarity","level":2,"score":0.5010419},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4853312},{"id":"https://openalex.org/C54108766","wikidata":"https://www.wikidata.org/wiki/Q391064","display_name":"Packet loss","level":3,"score":0.46191835},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.45235497},{"id":"https://openalex.org/C179518139","wikidata":"https://www.wikidata.org/wiki/Q5140297","display_name":"Coding (social sciences)","level":2,"score":0.43594164},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.42911676},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.40757564},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36409348},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.356219},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.17467025},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.13998377},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.120951325},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.11724925},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.090610325},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.08101979},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icics.2015.7459845","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1533662082","https://openalex.org/W1968960141","https://openalex.org/W2005641836","https://openalex.org/W2013014515","https://openalex.org/W2021152643","https://openalex.org/W2045416035","https://openalex.org/W2064617372","https://openalex.org/W2119936328","https://openalex.org/W2122722808","https://openalex.org/W2129904890","https://openalex.org/W2130776173","https://openalex.org/W2131952271","https://openalex.org/W2139936159","https://openalex.org/W2142276208","https://openalex.org/W2143914681","https://openalex.org/W2144660376","https://openalex.org/W2148037789","https://openalex.org/W2155107512","https://openalex.org/W2164432056","https://openalex.org/W2167160216"],"related_works":["https://openalex.org/W340510364","https://openalex.org/W3181449887","https://openalex.org/W2384378118","https://openalex.org/W2329029181","https://openalex.org/W2160498534","https://openalex.org/W2147372915","https://openalex.org/W2140728688","https://openalex.org/W2137687233","https://openalex.org/W2037831472","https://openalex.org/W2015867550"],"abstract_inverted_index":{"Video":[0],"streaming":[1],"over":[2],"unreliable":[3],"networks":[4],"requires":[5],"preventive":[6],"measures":[7,20],"to":[8,31,56,158],"avoid":[9],"quality":[10,162],"deterioration":[11],"in":[12,22,24,37,69,91,126,132,167,188],"the":[13,25,33,38,47,51,58,62,65,78,85,108,116,127,139,160,181],"presence":[14,70,128],"of":[15,64,71,98,113,129,154,169,190],"packet":[16],"losses.":[17],"However,":[18],"these":[19],"result":[21],"redundancy":[23,59],"transmitted":[26],"data":[27,72,130],"which":[28],"is":[29,100,105,156],"utilized":[30],"estimate":[32],"missing":[34,150],"packets":[35],"lost":[36,101],"delivered":[39,66,109],"portions.":[40],"In":[41,119],"this":[42],"paper,":[43],"we":[44,122,142],"have":[45,143],"used":[46],"self-similarity":[48,114,155],"property":[49],"if":[50],"discrete":[52],"wavelet":[53],"transform":[54],"(DWT)":[55],"minimize":[57],"and":[60,165,172],"improve":[61,159],"fidelity":[63],"video":[67,79,124,161],"streams":[68],"loss.":[73],"Our":[74],"proposed":[75,178],"method":[76,148,179,187],"decomposes":[77],"into":[80],"multiple":[81],"descriptions":[82,88],"after":[83],"applying":[84],"DWT.":[86],"The":[87],"are":[89],"organized":[90],"such":[92],"a":[93],"way":[94],"that":[95,145],"when":[96],"one":[97,133,170],"them":[99],"during":[102],"transmission,":[103],"it":[104],"estimated":[106],"using":[107],"portions":[110],"by":[111,152,163],"means":[112,153],"between":[115],"DWT":[117],"coefficients.":[118],"our":[120,146,177],"experiments,":[121],"compare":[123],"reconstruction":[125],"loss":[131],"or":[134],"two":[135,173],"descriptions.":[136],"Based":[137],"on":[138],"experimental":[140],"results,":[141],"ascertained":[144],"estimation":[147],"for":[149],"coefficients":[151],"able":[157],"2.14dB":[164],"7.26dB":[166],"case":[168,189],"description":[171],"descriptions,":[174],"respectively.":[175],"Moreover,":[176],"outperforms":[180],"state-of-the-art":[182],"Forward":[183],"Error":[184],"Correction":[185],"(FEC)":[186],"higher":[191],"bit-rates.":[192]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2363995139","counts_by_year":[],"updated_date":"2024-12-09T04:26:23.879111","created_date":"2016-06-24"}