{"id":"https://openalex.org/W4323824387","doi":"https://doi.org/10.1109/iceic57457.2023.10049882","title":"Multispectral Palm-vein Fusion for User Identification","display_name":"Multispectral Palm-vein Fusion for User Identification","publication_year":2023,"publication_date":"2023-02-05","ids":{"openalex":"https://openalex.org/W4323824387","doi":"https://doi.org/10.1109/iceic57457.2023.10049882"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iceic57457.2023.10049882","pdf_url":null,"source":{"id":"https://openalex.org/S4306498714","display_name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101896479","display_name":"Jaekwon Lee","orcid":"https://orcid.org/0000-0002-5222-1820"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"funder","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jaekwon Lee","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea","institution_ids":["https://openalex.org/I193775966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100447367","display_name":"Joo\u2010Young Kim","orcid":"https://orcid.org/0000-0001-7771-5133"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"funder","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jooyoung Kim","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea","institution_ids":["https://openalex.org/I193775966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100454693","display_name":"Donghyun Kim","orcid":"https://orcid.org/0000-0003-1960-0527"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"funder","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Donghyun Kim","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea","institution_ids":["https://openalex.org/I193775966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089298785","display_name":"Seung Ah Lee","orcid":"https://orcid.org/0000-0001-5173-1565"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"funder","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Seung Ah Lee","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea","institution_ids":["https://openalex.org/I193775966"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015104479","display_name":"Jong Hwan Sung","orcid":"https://orcid.org/0000-0002-4019-866X"},"institutions":[{"id":"https://openalex.org/I94588446","display_name":"Hongik University","ror":"https://ror.org/00egdv862","country_code":"KR","type":"funder","lineage":["https://openalex.org/I94588446"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jong Hwan Sung","raw_affiliation_strings":["Department of Chemical Engineering, Hongik University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"Department of Chemical Engineering, Hongik University, Seoul, Korea","institution_ids":["https://openalex.org/I94588446"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018473729","display_name":"Kar\u2010Ann Toh","orcid":"https://orcid.org/0000-0002-3736-003X"},"institutions":[{"id":"https://openalex.org/I193775966","display_name":"Yonsei University","ror":"https://ror.org/01wjejq96","country_code":"KR","type":"funder","lineage":["https://openalex.org/I193775966"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kar-Ann Toh","raw_affiliation_strings":["School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea","institution_ids":["https://openalex.org/I193775966"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.372,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.489224,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":65,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10828","display_name":"Biometric Identification and Security","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9676,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.6010279},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4929397},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.44008902}],"concepts":[{"id":"https://openalex.org/C173163844","wikidata":"https://www.wikidata.org/wiki/Q1761440","display_name":"Multispectral image","level":2,"score":0.8333667},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6942391},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.65270853},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64812016},{"id":"https://openalex.org/C94598645","wikidata":"https://www.wikidata.org/wiki/Q2347874","display_name":"Palm","level":2,"score":0.64359313},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.6010279},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.5709559},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.5376199},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.50476897},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4929397},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.47981954},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4776008},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.45121032},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.44008902},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3516865},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22042227},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.123862445},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.08597511},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iceic57457.2023.10049882","pdf_url":null,"source":{"id":"https://openalex.org/S4306498714","display_name":"2020 International Conference on Electronics, Information, and Communication (ICEIC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321408","funder_display_name":"Ministry of Education","award_id":null},{"funder":"https://openalex.org/F4320322120","funder_display_name":"National Research Foundation of Korea","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W2021803684","https://openalex.org/W2027963563","https://openalex.org/W2099244020","https://openalex.org/W2136461127","https://openalex.org/W2144025519","https://openalex.org/W2194775991","https://openalex.org/W2383346883","https://openalex.org/W2565076265","https://openalex.org/W2618322383","https://openalex.org/W2618530766","https://openalex.org/W2803380720","https://openalex.org/W2901919025","https://openalex.org/W2922191826","https://openalex.org/W2963163009","https://openalex.org/W2964121744","https://openalex.org/W2969822975","https://openalex.org/W2969868335","https://openalex.org/W2997116349","https://openalex.org/W3102431071","https://openalex.org/W4239510810","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W4318664220","https://openalex.org/W2885125400","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W1989889224","https://openalex.org/W1987128138","https://openalex.org/W1657880117","https://openalex.org/W1001352512"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"a":[5,21,45,56,74,80],"system":[6,69],"for":[7],"user":[8],"identification":[9,87],"based":[10],"on":[11,73],"palm-veins":[12],"extracted":[13],"from":[14,34],"multi-spectral":[15],"images":[16,33],"of":[17,42,85],"the":[18,30,40,52,64,86],"palm.":[19],"Essentially,":[20],"feature":[22],"level":[23],"fusion":[24],"is":[25,60],"firstly":[26],"conducted":[27],"by":[28],"stacking":[29],"preprocessed":[31],"palm":[32,77],"multiple":[35],"image":[36],"spectrums":[37],"to":[38,62],"increase":[39],"richness":[41],"information.":[43],"Subsequently,":[44],"convolution":[46],"neural":[47],"network":[48],"(CNN),":[49],"which":[50],"utilizes":[51],"residual":[53],"learning":[54],"with":[55],"linear":[57],"bottleneck":[58],"scheme,":[59],"adopted":[61],"learn":[63],"stacked":[65],"features.":[66],"The":[67],"proposed":[68],"has":[70,89],"been":[71,90],"evaluated":[72],"public":[75],"multispectral":[76],"database":[78],"where":[79],"promising":[81],"performance":[82],"in":[83],"terms":[84],"accuracy":[88],"observed.":[91]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4323824387","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-18T15:31:17.722726","created_date":"2023-03-11"}