{"id":"https://openalex.org/W3133298282","doi":"https://doi.org/10.1109/icdmw51313.2020.00059","title":"Nonlinear Tensor Completion Using Domain Knowledge: An Application in Analysts' Earnings Forecast","display_name":"Nonlinear Tensor Completion Using Domain Knowledge: An Application in Analysts' Earnings Forecast","publication_year":2020,"publication_date":"2020-11-01","ids":{"openalex":"https://openalex.org/W3133298282","doi":"https://doi.org/10.1109/icdmw51313.2020.00059","mag":"3133298282"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw51313.2020.00059","pdf_url":null,"source":{"id":"https://openalex.org/S4363608316","display_name":"2021 International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073717961","display_name":"Ajim Uddin","orcid":"https://orcid.org/0000-0002-3745-5194"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ajim Uddin","raw_affiliation_strings":["Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey"],"affiliations":[{"raw_affiliation_string":"Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey","institution_ids":["https://openalex.org/I118118575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076090064","display_name":"Xinyuan Tao","orcid":"https://orcid.org/0000-0003-1888-3211"},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xinyuan Tao","raw_affiliation_strings":["Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey"],"affiliations":[{"raw_affiliation_string":"Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey","institution_ids":["https://openalex.org/I118118575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112727513","display_name":"Chia-Ching Chou","orcid":null},"institutions":[{"id":"https://openalex.org/I1629065","display_name":"Central Michigan University","ror":"https://ror.org/02xawj266","country_code":"US","type":"funder","lineage":["https://openalex.org/I1629065"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chia-Ching Chou","raw_affiliation_strings":["Department of Management, Central Michigan University, Mount Pleasant, Michigan"],"affiliations":[{"raw_affiliation_string":"Department of Management, Central Michigan University, Mount Pleasant, Michigan","institution_ids":["https://openalex.org/I1629065"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5104477063","display_name":"Dantong Yu","orcid":null},"institutions":[{"id":"https://openalex.org/I118118575","display_name":"New Jersey Institute of Technology","ror":"https://ror.org/05e74xb87","country_code":"US","type":"education","lineage":["https://openalex.org/I118118575"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dantong Yu","raw_affiliation_strings":["Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey"],"affiliations":[{"raw_affiliation_string":"Martin Tuchman School of Management, New Jersey Institute of Technology, Newark, New Jersey","institution_ids":["https://openalex.org/I118118575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":"112","issue":null,"first_page":"377","last_page":"384"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12303","display_name":"Tensor decomposition and applications","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/imputation","display_name":"Imputation (statistics)","score":0.6716283}],"concepts":[{"id":"https://openalex.org/C2781426361","wikidata":"https://www.wikidata.org/wiki/Q5326940","display_name":"Earnings","level":2,"score":0.755739},{"id":"https://openalex.org/C58041806","wikidata":"https://www.wikidata.org/wiki/Q1660484","display_name":"Imputation (statistics)","level":3,"score":0.6716283},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58496386},{"id":"https://openalex.org/C186027771","wikidata":"https://www.wikidata.org/wiki/Q4008379","display_name":"Valuation (finance)","level":2,"score":0.5780807},{"id":"https://openalex.org/C9357733","wikidata":"https://www.wikidata.org/wiki/Q6878417","display_name":"Missing data","level":2,"score":0.5608841},{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.53578115},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.4712905},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.44067448},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38904253},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.3344368},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.29894248},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2923283},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.2484658},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.22185245},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw51313.2020.00059","pdf_url":null,"source":{"id":"https://openalex.org/S4363608316","display_name":"2021 International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1619480882","https://openalex.org/W1814521481","https://openalex.org/W1963826206","https://openalex.org/W1969116741","https://openalex.org/W1985349674","https://openalex.org/W1988410260","https://openalex.org/W2029438586","https://openalex.org/W2054141820","https://openalex.org/W2082137964","https://openalex.org/W2121739212","https://openalex.org/W2125291718","https://openalex.org/W2137226992","https://openalex.org/W2295598076","https://openalex.org/W2483142831","https://openalex.org/W2487770199","https://openalex.org/W2600306306","https://openalex.org/W2619958297","https://openalex.org/W2739547565","https://openalex.org/W2742340639","https://openalex.org/W2889186417","https://openalex.org/W2896902684","https://openalex.org/W2914231700","https://openalex.org/W2962698165","https://openalex.org/W2965446129","https://openalex.org/W3034816749","https://openalex.org/W3102476541","https://openalex.org/W3121513812","https://openalex.org/W3122263515","https://openalex.org/W3123336671","https://openalex.org/W3124131307","https://openalex.org/W3124738474","https://openalex.org/W331379265","https://openalex.org/W564538011"],"related_works":["https://openalex.org/W4211215373","https://openalex.org/W3179858851","https://openalex.org/W3144172081","https://openalex.org/W3028371478","https://openalex.org/W2581984549","https://openalex.org/W2181530120","https://openalex.org/W2081476516","https://openalex.org/W2055961818","https://openalex.org/W2024529227","https://openalex.org/W1574575415"],"abstract_inverted_index":{"Financial":[0],"analysts'":[1],"earnings":[2,103],"forecast":[3,62],"is":[4,19,124],"one":[5,41],"of":[6,139],"the":[7,52,61,78,121,128,136],"most":[8],"critical":[9],"inputs":[10],"for":[11,25,127],"security":[12],"valuation":[13],"and":[14,31,58,76,115],"investment":[15],"decisions.":[16],"However,":[17],"it":[18],"challenging":[20],"to":[21],"utilize":[22],"such":[23],"information":[24,75,98],"two":[26],"main":[27],"reasons:":[28],"missing":[29,56,87],"values":[30,57],"heterogeneity":[32],"among":[33],"analysts.":[34],"In":[35],"this":[36],"paper,":[37],"we":[38,90,99],"show":[39,91],"that":[40,92],"recent":[42],"breakthrough":[43],"in":[44,64,143],"nonlinear":[45],"tensor":[46,79],"completion":[47,80],"algorithm,":[48],"CoSTCo":[49,71],"[1],":[50],"overcomes":[51],"difficulty":[53],"by":[54,82,106],"imputing":[55],"significantly":[59],"improves":[60],"accuracy":[63,105],"earnings.":[65],"Compared":[66],"with":[67,85,130],"conventional":[68],"imputation":[69],"approaches,":[70],"effectively":[72],"captures":[73],"latent":[74],"reduces":[77],"errors":[81],"50%,":[83],"even":[84],"98%":[86],"values.":[88],"Furthermore,":[89],"using":[93,111],"firm":[94],"characteristics":[95],"as":[96],"auxiliary":[97],"can":[100],"improve":[101],"firms'":[102],"prediction":[104],"6%.":[107],"Results":[108],"are":[109],"consistent":[110],"different":[112],"performance":[113,122],"metrics":[114],"across":[116],"various":[117],"industry":[118],"sectors.":[119],"Notably,":[120],"improvement":[123],"more":[125],"salient":[126],"sectors":[129],"high":[131],"heterogeneity.":[132],"Our":[133],"findings":[134],"imply":[135],"successful":[137],"application":[138],"advanced":[140],"ML":[141],"techniques":[142],"a":[144],"real":[145],"financial":[146],"problem.":[147]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3133298282","counts_by_year":[],"updated_date":"2025-02-02T13:14:12.327588","created_date":"2021-03-01"}