{"id":"https://openalex.org/W2914575492","doi":"https://doi.org/10.1109/icdmw.2018.00223","title":"Extracting Addresses from Unstructured Text Using Bi-directional Recurrent Neural Networks","display_name":"Extracting Addresses from Unstructured Text Using Bi-directional Recurrent Neural Networks","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2914575492","doi":"https://doi.org/10.1109/icdmw.2018.00223","mag":"2914575492"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00223","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046953427","display_name":"Shivin Srivastava","orcid":"https://orcid.org/0000-0002-3598-5749"},"institutions":[{"id":"https://openalex.org/I74796645","display_name":"Birla Institute of Technology and Science, Pilani","ror":"https://ror.org/001p3jz28","country_code":"IN","type":"funder","lineage":["https://openalex.org/I74796645"]}],"countries":["IN"],"is_corresponding":true,"raw_author_name":"Shivin Srivastava","raw_affiliation_strings":["Dept. of Computer Science and Information Systems, Birla Institute of Technology and Sciences, Pilani, India"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science and Information Systems, Birla Institute of Technology and Sciences, Pilani, India","institution_ids":["https://openalex.org/I74796645"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5046953427"],"corresponding_institution_ids":["https://openalex.org/I74796645"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":62},"biblio":{"volume":null,"issue":null,"first_page":"1511","last_page":"1513"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/unstructured-data","display_name":"Unstructured data","score":0.6751661}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84215975},{"id":"https://openalex.org/C2781252014","wikidata":"https://www.wikidata.org/wiki/Q1141900","display_name":"Unstructured data","level":3,"score":0.6751661},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.6683017},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6122687},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6001799},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48187193},{"id":"https://openalex.org/C2776445246","wikidata":"https://www.wikidata.org/wiki/Q1792644","display_name":"Style (visual arts)","level":2,"score":0.43883005},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.35804194},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.26285994},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.2174753},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00223","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.78}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":3,"referenced_works":["https://openalex.org/W150801922","https://openalex.org/W1533861849","https://openalex.org/W1540364107"],"related_works":["https://openalex.org/W4298287631","https://openalex.org/W4225394202","https://openalex.org/W3036642985","https://openalex.org/W3034302643","https://openalex.org/W3032952384","https://openalex.org/W2982145560","https://openalex.org/W2964335273","https://openalex.org/W2953061907","https://openalex.org/W1889624880","https://openalex.org/W1847088711"],"abstract_inverted_index":{"Addresses":[0],"can":[1,24],"be":[2,12],"classified":[3],"as":[4],"unstructured":[5,47],"text":[6,48,70],"because":[7],"they":[8,18],"lack":[9,62],"meta-information":[10],"to":[11,26,43,95],"directly":[13],"indexed":[14],"in":[15,46,98],"databases.":[16],"Still":[17],"demonstrate":[19],"an":[20],"internal":[21],"structure":[22,89],"which":[23],"used":[25],"automatically":[27],"extract":[28],"them":[29],"using":[30,51],"machine":[31,40],"learning":[32,41],"techniques.":[33],"In":[34],"this":[35],"work":[36],"we":[37],"describe":[38],"a":[39],"approach":[42],"identify":[44],"addresses":[45,93],"(like":[49],"blogs)":[50],"Bidirectional":[52],"Recurrent":[53],"Neural":[54],"Networks":[55],"(BRNNs).":[56],"We":[57],"overcome":[58],"the":[59,88],"problem":[60,76],"of":[61,63,92],"training":[64],"data":[65],"by":[66],"generating":[67],"synthetic":[68],"free":[69],"entries":[71],"and":[72],"come":[73],"up":[74],"with":[75],"specific":[77],"features.":[78],"Our":[79],"system":[80],"does":[81],"not":[82],"impose":[83],"any":[84],"strict":[85],"condition":[86],"on":[87],"or":[90],"style":[91],"leading":[94],"many":[96],"applications":[97],"real":[99],"life.":[100]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2914575492","counts_by_year":[],"updated_date":"2025-02-03T01:40:39.095402","created_date":"2019-02-21"}