{"id":"https://openalex.org/W2963443688","doi":"https://doi.org/10.1109/icdmw.2018.00172","title":"Event Detection in Twitter: A Keyword Volume Approach","display_name":"Event Detection in Twitter: A Keyword Volume Approach","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2963443688","doi":"https://doi.org/10.1109/icdmw.2018.00172","mag":"2963443688"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00172","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1901.00570","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069924021","display_name":"Ahmad Hany Hossny","orcid":"https://orcid.org/0000-0002-5178-9211"},"institutions":[{"id":"https://openalex.org/I5681781","display_name":"University of Adelaide","ror":"https://ror.org/00892tw58","country_code":"AU","type":"funder","lineage":["https://openalex.org/I5681781"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ahmad Hany Hossny","raw_affiliation_strings":["School of Mathematical Sciences, University of Adelaide, Adelaide, Australia"],"affiliations":[{"raw_affiliation_string":"School of Mathematical Sciences, University of Adelaide, Adelaide, Australia","institution_ids":["https://openalex.org/I5681781"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055805371","display_name":"Lewis Mitchell","orcid":"https://orcid.org/0000-0001-8191-1997"},"institutions":[{"id":"https://openalex.org/I5681781","display_name":"University of Adelaide","ror":"https://ror.org/00892tw58","country_code":"AU","type":"funder","lineage":["https://openalex.org/I5681781"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Lewis Mitchell","raw_affiliation_strings":["School of Mathematical Sciences, University of Adelaide, Adelaide, Australia"],"affiliations":[{"raw_affiliation_string":"School of Mathematical Sciences, University of Adelaide, Adelaide, Australia","institution_ids":["https://openalex.org/I5681781"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.702,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":32,"citation_normalized_percentile":{"value":0.904387,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"1200","last_page":"1208"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12592","display_name":"Opinion Dynamics and Social Influence","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/jaccard-index","display_name":"Jaccard index","score":0.48179144},{"id":"https://openalex.org/keywords/stop-words","display_name":"Stop words","score":0.45063135},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.44808805},{"id":"https://openalex.org/keywords/bigram","display_name":"Bigram","score":0.42312163},{"id":"https://openalex.org/keywords/word2vec","display_name":"Word2vec","score":0.4214502}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7869879},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6437666},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6320857},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.5876998},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.5724527},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.56841207},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.55622184},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.484699},{"id":"https://openalex.org/C203519979","wikidata":"https://www.wikidata.org/wiki/Q865360","display_name":"Jaccard index","level":3,"score":0.48179144},{"id":"https://openalex.org/C188338183","wikidata":"https://www.wikidata.org/wiki/Q80735","display_name":"Stop words","level":3,"score":0.45063135},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.44808805},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.443426},{"id":"https://openalex.org/C108757681","wikidata":"https://www.wikidata.org/wiki/Q2773912","display_name":"Bigram","level":3,"score":0.42312163},{"id":"https://openalex.org/C2776461190","wikidata":"https://www.wikidata.org/wiki/Q22673982","display_name":"Word2vec","level":3,"score":0.4214502},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.41800606},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34433538},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11319208},{"id":"https://openalex.org/C137546455","wikidata":"https://www.wikidata.org/wiki/Q3213474","display_name":"Trigram","level":2,"score":0.095564425},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00172","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1901.00570","pdf_url":"https://arxiv.org/pdf/1901.00570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1901.00570","pdf_url":"https://arxiv.org/pdf/1901.00570","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.53,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W11244355","https://openalex.org/W1574447377","https://openalex.org/W165525898","https://openalex.org/W1874027545","https://openalex.org/W1999450401","https://openalex.org/W2018165284","https://openalex.org/W2023205960","https://openalex.org/W2040704490","https://openalex.org/W2048444585","https://openalex.org/W2058013187","https://openalex.org/W2097314890","https://openalex.org/W2110676972","https://openalex.org/W2123661878","https://openalex.org/W2124499489","https://openalex.org/W2128891547","https://openalex.org/W2129572801","https://openalex.org/W2137442736","https://openalex.org/W2140427797","https://openalex.org/W2143017621","https://openalex.org/W2144989404","https://openalex.org/W2145979309","https://openalex.org/W2152311353","https://openalex.org/W2153579005","https://openalex.org/W2159591551","https://openalex.org/W2171406132","https://openalex.org/W2188783997","https://openalex.org/W2251243116","https://openalex.org/W2263338482","https://openalex.org/W2273718352","https://openalex.org/W2283304333","https://openalex.org/W2284888948","https://openalex.org/W2293165966","https://openalex.org/W2415973339","https://openalex.org/W2462358393","https://openalex.org/W2463441385","https://openalex.org/W2518605709","https://openalex.org/W2592934461","https://openalex.org/W2602390244","https://openalex.org/W2613214602","https://openalex.org/W2618230655","https://openalex.org/W2744190418","https://openalex.org/W2883845484","https://openalex.org/W3106063097","https://openalex.org/W4239719188","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W4386021087","https://openalex.org/W4290065438","https://openalex.org/W4254879869","https://openalex.org/W4236441695","https://openalex.org/W3216349391","https://openalex.org/W3194154551","https://openalex.org/W3117913969","https://openalex.org/W3006552719","https://openalex.org/W2900572605","https://openalex.org/W2562995433"],"abstract_inverted_index":{"Event":[0],"detection":[1,133],"using":[2,183,216],"social":[3],"media":[4],"streams":[5],"needs":[6],"a":[7,103,131],"set":[8],"of":[9,25,81,88,100,123,145],"informative":[10,29],"features":[11,30,166,180],"with":[12,23,79,152],"strong":[13],"signals":[14],"that":[15,75],"need":[16],"minimal":[17],"preprocessing":[18],"and":[19,46,56,194,206,227,243],"are":[20,76,163,181],"highly":[21],"associated":[22,78],"events":[24,80,99],"interest.":[26],"Identifying":[27],"these":[28,89],"as":[31,37,84,165,187,224,229,231],"keywords":[32,70,90,109],"from":[33],"Twitter":[34,74],"is":[35,91,119,214],"challenging,":[36],"people":[38],"use":[39,108,137],"informal":[40],"language":[41,219,234],"to":[42,67,96,112,120,141,167,171,204,210],"express":[43],"their":[44],"thoughts":[45],"feelings.":[47],"This":[48],"informality":[49],"includes":[50],"acronyms,":[51],"misspelled":[52],"words,":[53],"synonyms,":[54],"transliteration":[55],"ambiguous":[57],"terms.":[58],"In":[59],"this":[60],"paper,":[61],"we":[62],"propose":[63],"an":[64,173],"efficient":[65],"method":[66,118],"select":[68],"the":[69,98,114,138,143,146,153,217,232],"frequently":[71],"used":[72,164],"in":[73,93,102,220,235],"mostly":[77],"interest":[82,101],"such":[83,186,223],"protests.":[85],"The":[86,116,159,178,212,237],"volume":[87],"tracked":[92],"real":[94],"time":[95],"identify":[97],"binary":[104,147,154],"classification":[105],"scheme.":[106],"We":[107],"within":[110],"word-pairs":[111,162],"capture":[113],"context.":[115],"proposed":[117],"binarize":[121],"vectors":[122],"daily":[124],"counts":[125],"for":[126,149],"each":[127,150],"word-pair":[128,151],"by":[129],"applying":[130],"spike":[132],"temporal":[134],"filter,":[135],"then":[136],"Jaccard":[139],"metric":[140],"measure":[142],"similarity":[144],"vector":[148,155],"describing":[156],"event":[157,174],"occurrence.":[158],"top":[160],"n":[161],"classify":[168],"any":[169],"day":[170],"be":[172],"or":[175],"non-event":[176],"day.":[177],"selected":[179],"tested":[182],"multiple":[184,221],"classifiers":[185],"Naive":[188],"Bayes,":[189],"SVM,":[190],"Logistic":[191],"Regression,":[192],"KNN":[193],"decision":[195],"trees.":[196],"They":[197],"all":[198],"produced":[199],"AUC":[200],"ROC":[201],"scores":[202,208],"up":[203,209],"0.91":[205],"F1":[207],"0.79.":[211],"experiment":[213],"performed":[215],"English":[218],"cities":[222],"Melbourne,":[225],"Sydney":[226],"Brisbane":[228],"well":[230],"Indonesian":[233],"Jakarta.":[236],"two":[238],"experiments,":[239],"comprising":[240],"different":[241],"languages":[242],"locations,":[244],"yielded":[245],"similar":[246],"results.":[247]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963443688","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":2}],"updated_date":"2025-02-25T01:40:17.485006","created_date":"2019-07-30"}