{"id":"https://openalex.org/W2912595408","doi":"https://doi.org/10.1109/icdmw.2018.00151","title":"Analyzing Centralities of Embedded Nodes","display_name":"Analyzing Centralities of Embedded Nodes","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2912595408","doi":"https://doi.org/10.1109/icdmw.2018.00151","mag":"2912595408"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00151","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019732992","display_name":"Kento Nozawa","orcid":null},"institutions":[{"id":"https://openalex.org/I74801974","display_name":"The University of Tokyo","ror":"https://ror.org/057zh3y96","country_code":"JP","type":"funder","lineage":["https://openalex.org/I74801974"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kento Nozawa","raw_affiliation_strings":["AIST & The University of Tokyo"],"affiliations":[{"raw_affiliation_string":"AIST & The University of Tokyo","institution_ids":["https://openalex.org/I74801974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065015874","display_name":"Masanari Kimura","orcid":"https://orcid.org/0000-0002-9953-3469"},"institutions":[{"id":"https://openalex.org/I146399215","display_name":"University of Tsukuba","ror":"https://ror.org/02956yf07","country_code":"JP","type":"funder","lineage":["https://openalex.org/I146399215"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Masanari Kimura","raw_affiliation_strings":["University of Tsukuba"],"affiliations":[{"raw_affiliation_string":"University of Tsukuba","institution_ids":["https://openalex.org/I146399215"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5042640195","display_name":"Atsunori Kanemura","orcid":"https://orcid.org/0000-0001-7425-3949"},"institutions":[{"id":"https://openalex.org/I4210110448","display_name":"Learning Through an Expanded Arts Program","ror":"https://ror.org/01yq8nk56","country_code":"US","type":"education","lineage":["https://openalex.org/I4210110448"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Atsunori Kanemura","raw_affiliation_strings":["AIST & LeapMind Inc."],"affiliations":[{"raw_affiliation_string":"AIST & LeapMind Inc.","institution_ids":["https://openalex.org/I4210110448"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":62},"biblio":{"volume":null,"issue":null,"first_page":"1046","last_page":"1049"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pagerank","display_name":"PageRank","score":0.8382151},{"id":"https://openalex.org/keywords/graph-embedding","display_name":"Graph Embedding","score":0.56968385}],"concepts":[{"id":"https://openalex.org/C2779172887","wikidata":"https://www.wikidata.org/wiki/Q184316","display_name":"PageRank","level":2,"score":0.8382151},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76157},{"id":"https://openalex.org/C53811970","wikidata":"https://www.wikidata.org/wiki/Q5062194","display_name":"Centrality","level":2,"score":0.7259278},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.70112705},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.65131676},{"id":"https://openalex.org/C75564084","wikidata":"https://www.wikidata.org/wiki/Q5597085","display_name":"Graph embedding","level":3,"score":0.56968385},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5437452},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.531974},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5306636},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.43825805},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39887512},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36538082},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33243233},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13486567},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00151","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W1875112053","https://openalex.org/W1888005072","https://openalex.org/W2066636486","https://openalex.org/W2153579005","https://openalex.org/W2153959628","https://openalex.org/W2156718197","https://openalex.org/W2259891323","https://openalex.org/W2758602106","https://openalex.org/W2768092833","https://openalex.org/W2770604839","https://openalex.org/W2798638367","https://openalex.org/W2962756421","https://openalex.org/W2962772361","https://openalex.org/W2963224980","https://openalex.org/W3104097132","https://openalex.org/W4238452917","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W4302136133","https://openalex.org/W3206528106","https://openalex.org/W3036264823","https://openalex.org/W2964025114","https://openalex.org/W2913425789","https://openalex.org/W2912814903","https://openalex.org/W2905200617","https://openalex.org/W2887986896","https://openalex.org/W2788040429","https://openalex.org/W1967232009"],"abstract_inverted_index":{"Given":[0],"a":[1,5,15,27],"dataset":[2],"described":[3],"as":[4,8,32,80],"graph":[6],"such":[7,31,79],"social":[9],"networks,":[10],"node":[11,20,33,65,76,84],"embedding":[12,36,102],"algorithms":[13],"estimate":[14],"real-valued":[16],"vector":[17],"for":[18,26],"each":[19],"that":[21],"can":[22,97],"later":[23],"be":[24],"used":[25],"machine":[28],"learning":[29],"task":[30,40,45],"classification.":[34],"These":[35],"vectors":[37],"simplify":[38],"the":[39,44,62,92],"and":[41,52],"often":[42],"improve":[43,101],"performance.":[46],"Although":[47],"word":[48],"embeddings,":[49,95],"e.g.,":[50],"skip-gram":[51],"CBOW,":[53],"have":[54],"been":[55],"well":[56],"analyzed,":[57],"little":[58],"is":[59],"known":[60],"about":[61],"properties":[63,93],"of":[64,74,94],"embeddings.":[66],"In":[67],"this":[68],"paper,":[69],"we":[70],"analyze":[71],"empirical":[72],"distributions":[73],"several":[75],"centrality":[77],"measures,":[78],"PageRank,":[81],"based":[82],"on":[83],"classification":[85],"results.":[86],"Experimental":[87],"results":[88],"give":[89],"insights":[90],"into":[91],"which":[96],"provide":[98],"cues":[99],"to":[100],"algorithms.":[103]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2912595408","counts_by_year":[],"updated_date":"2025-02-03T00:49:45.293703","created_date":"2019-02-21"}