{"id":"https://openalex.org/W2914357290","doi":"https://doi.org/10.1109/icdmw.2018.00147","title":"Event2vec: Heterogeneous Hypergraph Embedding for Event Data","display_name":"Event2vec: Heterogeneous Hypergraph Embedding for Event Data","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2914357290","doi":"https://doi.org/10.1109/icdmw.2018.00147","mag":"2914357290"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00147","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030042334","display_name":"Yunfei Chu","orcid":"https://orcid.org/0000-0002-3033-2984"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunfei Chu","raw_affiliation_strings":["Beijing Laboratory of Advanced Information Networks, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Laboratory of Advanced Information Networks, Beijing, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100536990","display_name":"Chunyan Feng","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chunyan Feng","raw_affiliation_strings":["Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058648594","display_name":"Caili Guo","orcid":"https://orcid.org/0000-0001-8892-4520"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Caili Guo","raw_affiliation_strings":["Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101752149","display_name":"Yaqing Wang","orcid":"https://orcid.org/0000-0003-4605-3151"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yaqing Wang","raw_affiliation_strings":["Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101702810","display_name":"Jenq\u2010Neng Hwang","orcid":"https://orcid.org/0000-0002-8877-2421"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"funder","lineage":["https://openalex.org/I201448701"]},{"id":"https://openalex.org/I58610484","display_name":"Seattle University","ror":"https://ror.org/02jqc0m91","country_code":"US","type":"education","lineage":["https://openalex.org/I58610484"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jenq-Neng Hwang","raw_affiliation_strings":["Department of Electrical Engineering, University of Washington, Seattle, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, University of Washington, Seattle, USA","institution_ids":["https://openalex.org/I201448701","https://openalex.org/I58610484"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.454272,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1022","last_page":"1029"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hypergraph","display_name":"Hypergraph","score":0.6617066},{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.5943687}],"concepts":[{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.8184615},{"id":"https://openalex.org/C2779662365","wikidata":"https://www.wikidata.org/wiki/Q5416694","display_name":"Event (particle physics)","level":2,"score":0.7613254},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.76078105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71578515},{"id":"https://openalex.org/C2781221856","wikidata":"https://www.wikidata.org/wiki/Q840247","display_name":"Hypergraph","level":2,"score":0.6617066},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.5943687},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.5047275},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4349694},{"id":"https://openalex.org/C66882249","wikidata":"https://www.wikidata.org/wiki/Q169336","display_name":"Homogeneous","level":2,"score":0.4132836},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3574407},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16278657},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.07212436},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00147","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1888005072","https://openalex.org/W2001141328","https://openalex.org/W2022322548","https://openalex.org/W2053186076","https://openalex.org/W2062797058","https://openalex.org/W2145658888","https://openalex.org/W2153579005","https://openalex.org/W2156718197","https://openalex.org/W2187089797","https://openalex.org/W2295739661","https://openalex.org/W2393319904","https://openalex.org/W2584848220","https://openalex.org/W2743104969","https://openalex.org/W2767774008","https://openalex.org/W2962756421","https://openalex.org/W2963224980","https://openalex.org/W2963323306","https://openalex.org/W2963460103","https://openalex.org/W3104097132","https://openalex.org/W3104717349","https://openalex.org/W4293651439","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W4376608938","https://openalex.org/W4376608589","https://openalex.org/W4300037846","https://openalex.org/W4288275998","https://openalex.org/W3138003926","https://openalex.org/W2963081352","https://openalex.org/W1968265719","https://openalex.org/W1630514295","https://openalex.org/W1537073411","https://openalex.org/W1532260067"],"abstract_inverted_index":{"Network":[0],"embedding":[1,19,60,134],"learns":[2],"low-dimensional":[3],"representations":[4,141,162],"of":[5,10,49,56,142],"nodes":[6,65],"with":[7],"the":[8,12,22,32,37,54,106,147,161],"goal":[9],"preserving":[11,145],"original":[13],"network":[14,59],"structure.":[15],"However,":[16],"most":[17],"existing":[18],"methods":[20],"lack":[21],"ability":[23],"to":[24,36,89],"handle":[25],"event":[26,46,68,113,124],"data,":[27],"which":[28,52,102],"are":[29,47,69,78,125],"ubiquitous":[30],"in":[31,44,66,80,122],"real":[33],"world,":[34],"due":[35],"following":[38],"three":[39],"challenges:":[40],"(1)":[41],"participating":[42,120],"objects":[43,77,121,143],"an":[45],"often":[48],"different":[50,100],"types,":[51],"limit":[53],"feasibility":[55],"using":[57],"homogeneous":[58],"methods;":[61],"(2)":[62],"relations":[63],"among":[64,99],"each":[67],"much":[70],"more":[71,74],"complicated,":[72],"i.e.,":[73],"than":[75],"two":[76],"involved":[79],"one":[81,123],"event,":[82],"thus":[83],"it":[84],"is":[85],"far":[86],"from":[87],"enough":[88],"only":[90],"preserve":[91],"pairwise":[92],"proximity;":[93],"(3)":[94],"there":[95],"may":[96],"exist":[97],"relevance":[98],"events,":[101],"has":[103],"effects":[104],"on":[105,155],"representations.":[107],"In":[108],"this":[109],"paper,":[110],"we":[111],"model":[112],"data":[114],"as":[115,127],"a":[116,128,132],"heterogeneous":[117],"hypergraph,":[118],"where":[119],"represented":[126],"hyperedge,":[129],"and":[130,150],"propose":[131],"novel":[133],"framework,":[135],"namely":[136],"event2vec,":[137],"for":[138],"learning":[139],"effective":[140],"by":[144,164],"both":[146],"intra-event":[148],"proximity":[149],"inter-event":[151],"proximity.":[152],"Extensive":[153],"experiments":[154],"large-scale":[156],"real-world":[157],"datasets":[158],"demonstrate":[159],"that":[160],"learned":[163],"event2vec":[165],"can":[166],"outperform":[167],"state-of-the-art":[168],"methods.":[169]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2914357290","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2025-02-22T21:23:52.773583","created_date":"2019-02-21"}