{"id":"https://openalex.org/W2911586669","doi":"https://doi.org/10.1109/icdmw.2018.00128","title":"Ensemble Cross-Conformal Prediction","display_name":"Ensemble Cross-Conformal Prediction","publication_year":2018,"publication_date":"2018-11-01","ids":{"openalex":"https://openalex.org/W2911586669","doi":"https://doi.org/10.1109/icdmw.2018.00128","mag":"2911586669"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00128","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023192506","display_name":"Dorian Beganovic","orcid":null},"institutions":[{"id":"https://openalex.org/I34352273","display_name":"Maastricht University","ror":"https://ror.org/02jz4aj89","country_code":"NL","type":"funder","lineage":["https://openalex.org/I34352273"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Dorian Beganovic","raw_affiliation_strings":["DKE, Maastricht University, Maastricht, The Netherlands"],"affiliations":[{"raw_affiliation_string":"DKE, Maastricht University, Maastricht, The Netherlands","institution_ids":["https://openalex.org/I34352273"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101780661","display_name":"Evgueni Smirnov","orcid":"https://orcid.org/0000-0003-2778-6042"},"institutions":[{"id":"https://openalex.org/I34352273","display_name":"Maastricht University","ror":"https://ror.org/02jz4aj89","country_code":"NL","type":"funder","lineage":["https://openalex.org/I34352273"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Evgueni Smirnov","raw_affiliation_strings":["DKE, Maastricht University, Maastricht, The Netherlands"],"affiliations":[{"raw_affiliation_string":"DKE, Maastricht University, Maastricht, The Netherlands","institution_ids":["https://openalex.org/I34352273"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.061,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.198335,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"870","last_page":"877"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cross-validation","display_name":"Cross-validation","score":0.43511072}],"concepts":[{"id":"https://openalex.org/C98214594","wikidata":"https://www.wikidata.org/wiki/Q850275","display_name":"Conformal map","level":2,"score":0.71835804},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7170943},{"id":"https://openalex.org/C167085575","wikidata":"https://www.wikidata.org/wiki/Q6803654","display_name":"Mean squared prediction error","level":2,"score":0.4781802},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4581148},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45360503},{"id":"https://openalex.org/C27181475","wikidata":"https://www.wikidata.org/wiki/Q541014","display_name":"Cross-validation","level":2,"score":0.43511072},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42477036},{"id":"https://openalex.org/C179799912","wikidata":"https://www.wikidata.org/wiki/Q205084","display_name":"Computational complexity theory","level":2,"score":0.41616556},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.262528},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15083703},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2018.00128","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1553101044","https://openalex.org/W1589298886","https://openalex.org/W2009842403","https://openalex.org/W2267190997","https://openalex.org/W2360098","https://openalex.org/W2731770465","https://openalex.org/W3120740533","https://openalex.org/W584332710"],"related_works":["https://openalex.org/W816105089","https://openalex.org/W3162914528","https://openalex.org/W2173406670","https://openalex.org/W2136777044","https://openalex.org/W2093074476","https://openalex.org/W2085963144","https://openalex.org/W2085281262","https://openalex.org/W2044486817","https://openalex.org/W1971223889","https://openalex.org/W1526959707"],"abstract_inverted_index":{"The":[0,45],"cross-conformal":[1,40],"prediction":[2,22,63,76],"is":[3,48,67],"an":[4],"approach":[5,41,47],"to":[6],"confidence":[7,79],"region":[8],"prediction.":[9],"It":[10],"provides":[11,53],"a":[12,38,68],"trade-off":[13],"between":[14],"the":[15,21,28,56,62],"validity":[16,57],"and":[17,27,52,58],"informational":[18,59],"efficiency":[19,60],"of":[20,61],"regions":[23,77],"from":[24,31],"one":[25],"hand":[26],"computational":[29],"complexity":[30],"another.":[32],"In":[33],"this":[34],"paper":[35],"we":[36],"introduce":[37],"new":[39,46],"based":[42],"on":[43],"ensembles.":[44],"more":[49],"computationally":[50],"efficient":[51],"gains":[54],"in":[55],"regions.":[64],"Hence,":[65],"it":[66],"good":[69],"candidate":[70],"for":[71],"big":[72],"data":[73],"(analytics)":[74],"when":[75],"with":[78],"values":[80],"are":[81],"required.":[82]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2911586669","counts_by_year":[{"year":2020,"cited_by_count":1}],"updated_date":"2025-02-22T21:20:30.994825","created_date":"2019-02-21"}