{"id":"https://openalex.org/W2963373115","doi":"https://doi.org/10.1109/icdmw.2017.44","title":"Pruning and Nonparametric Multiple Change Point Detection","display_name":"Pruning and Nonparametric Multiple Change Point Detection","publication_year":2017,"publication_date":"2017-11-01","ids":{"openalex":"https://openalex.org/W2963373115","doi":"https://doi.org/10.1109/icdmw.2017.44","mag":"2963373115"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2017.44","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1709.06421","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100385192","display_name":"Wenyu Zhang","orcid":"https://orcid.org/0000-0001-5488-2158"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenyu Zhang","raw_affiliation_strings":["Department of Statistical Science, Cornell University"],"affiliations":[{"raw_affiliation_string":"Department of Statistical Science, Cornell University","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038879546","display_name":"Nicholas A. James","orcid":null},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nicholas A. James","raw_affiliation_strings":["Department of Operations Research and Information Engineering, Cornell University"],"affiliations":[{"raw_affiliation_string":"Department of Operations Research and Information Engineering, Cornell University","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051412963","display_name":"David S. Matteson","orcid":"https://orcid.org/0000-0002-2674-0387"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David S. Matteson","raw_affiliation_strings":["Departments of Statistical Science and Social Statistics, Cornell University"],"affiliations":[{"raw_affiliation_string":"Departments of Statistical Science and Social Statistics, Cornell University","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":18,"citation_normalized_percentile":{"value":0.959196,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"288","last_page":"295"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9728,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9728,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11898","display_name":"Economics of Agriculture and Food Markets","score":0.9382,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10836","display_name":"Metabolomics and Mass Spectrometry Studies","score":0.9038,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.5148791},{"id":"https://openalex.org/keywords/goodness-of-fit","display_name":"Goodness of fit","score":0.5112817},{"id":"https://openalex.org/keywords/point-estimation","display_name":"Point estimation","score":0.42962638}],"concepts":[{"id":"https://openalex.org/C102366305","wikidata":"https://www.wikidata.org/wiki/Q1097688","display_name":"Nonparametric statistics","level":2,"score":0.91011596},{"id":"https://openalex.org/C203595873","wikidata":"https://www.wikidata.org/wiki/Q25389927","display_name":"Change detection","level":2,"score":0.705703},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.625582},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6154587},{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.5148791},{"id":"https://openalex.org/C132480984","wikidata":"https://www.wikidata.org/wiki/Q2034239","display_name":"Goodness of fit","level":2,"score":0.5112817},{"id":"https://openalex.org/C142259097","wikidata":"https://www.wikidata.org/wiki/Q5891314","display_name":"Homogeneity (statistics)","level":2,"score":0.50679165},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.4944718},{"id":"https://openalex.org/C41426520","wikidata":"https://www.wikidata.org/wiki/Q1192065","display_name":"Point estimation","level":2,"score":0.42962638},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.40173754},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.36305124},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.36160052},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3415246},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3297803},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31972635},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdmw.2017.44","pdf_url":null,"source":{"id":"https://openalex.org/S4363608174","display_name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1709.06421","pdf_url":"https://arxiv.org/pdf/1709.06421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1709.06421","pdf_url":"https://arxiv.org/pdf/1709.06421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Climate action","score":0.86,"id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1513595767","https://openalex.org/W1607762543","https://openalex.org/W1811624918","https://openalex.org/W1973947823","https://openalex.org/W1975684011","https://openalex.org/W2021928455","https://openalex.org/W2030644393","https://openalex.org/W2031027346","https://openalex.org/W2037027640","https://openalex.org/W2056653303","https://openalex.org/W2110762162","https://openalex.org/W2120284406","https://openalex.org/W2120587290","https://openalex.org/W2132373491","https://openalex.org/W2133174470","https://openalex.org/W2150427470","https://openalex.org/W4236188916","https://openalex.org/W44337756","https://openalex.org/W639907764"],"related_works":["https://openalex.org/W2572678357","https://openalex.org/W2371593620","https://openalex.org/W2156037511","https://openalex.org/W2075537321","https://openalex.org/W2059493168","https://openalex.org/W2055668825","https://openalex.org/W2024930283","https://openalex.org/W2019481703","https://openalex.org/W1999392235","https://openalex.org/W1541538682"],"abstract_inverted_index":{"Change":[0],"point":[1,31,55,69,106],"analysis":[2],"is":[3],"a":[4,16,36,40],"statistical":[5],"tool":[6],"to":[7,43,74],"identify":[8],"homogeneity":[9],"within":[10,39,61],"time":[11],"series":[12],"data.":[13],"We":[14,64],"propose":[15,66],"pruning":[17,37],"approach":[18],"for":[19],"approximate":[20],"nonparametric":[21,77,104],"estimation":[22],"of":[23,79,95],"multiple":[24],"change":[25,30,54,68,105],"points.":[26],"This":[27],"general":[28],"purpose":[29],"detection":[32],"procedure":[33],"'cp3o'":[34],"applies":[35],"routine":[38],"dynamic":[41],"program":[42],"greatly":[44],"reduce":[45],"the":[46,62,93],"search":[47],"space":[48],"and":[49,85,102,115],"computational":[50],"costs.":[51],"Existing":[52],"goodness-of-fit":[53],"objectives":[56],"can":[57],"immediately":[58],"be":[59],"utilized":[60],"framework.":[63],"further":[65],"novel":[67],"algorithms":[70,97],"by":[71],"applying":[72],"cp3o":[73],"two":[75],"popular":[76],"goodness":[78],"fit":[80],"measures:":[81],"'e-cp3o'":[82],"uses":[83,87],"E-statistics,":[84],"'ks-cp3o'":[86],"Kolmogorov-Smirnov":[88],"statistics.":[89],"Simulation":[90],"studies":[91],"highlight":[92],"performance":[94],"these":[96,111],"in":[98],"comparison":[99],"with":[100,113],"parametric":[101],"other":[103],"methods.":[107],"Finally,":[108],"we":[109],"illustrate":[110],"approaches":[112],"climatological":[114],"financial":[116],"applications.":[117]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963373115","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":2},{"year":2013,"cited_by_count":1}],"updated_date":"2025-01-05T01:46:12.813830","created_date":"2019-07-30"}