{"id":"https://openalex.org/W4206980707","doi":"https://doi.org/10.1109/icdm51629.2021.00169","title":"Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection","display_name":"Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection","publication_year":2021,"publication_date":"2021-12-01","ids":{"openalex":"https://openalex.org/W4206980707","doi":"https://doi.org/10.1109/icdm51629.2021.00169"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdm51629.2021.00169","pdf_url":null,"source":{"id":"https://openalex.org/S4363608061","display_name":"2021 IEEE International Conference on Data Mining (ICDM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101802343","display_name":"Zhe Tang","orcid":"https://orcid.org/0000-0001-5983-0795"},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhe Tang","raw_affiliation_strings":["School of Computer Science and Engineering, Central South University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Central South University, Changsha, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007434600","display_name":"Zhengyun Chen","orcid":"https://orcid.org/0000-0002-2121-0723"},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengyun Chen","raw_affiliation_strings":["School of Computer Science and Engineering, Central South University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Central South University, Changsha, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101887977","display_name":"Fang Qi","orcid":"https://orcid.org/0000-0003-2227-9340"},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fang Qi","raw_affiliation_strings":["School of Computer Science and Engineering, Central South University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Central South University, Changsha, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101869216","display_name":"Lingyan Zhang","orcid":"https://orcid.org/0000-0003-4191-9059"},"institutions":[{"id":"https://openalex.org/I139660479","display_name":"Central South University","ror":"https://ror.org/00f1zfq44","country_code":"CN","type":"education","lineage":["https://openalex.org/I139660479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lingyan Zhang","raw_affiliation_strings":["School of Computer Science and Engineering, Central South University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Engineering, Central South University, Changsha, China","institution_ids":["https://openalex.org/I139660479"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010187139","display_name":"Shuhong Chen","orcid":"https://orcid.org/0000-0002-6120-6358"},"institutions":[{"id":"https://openalex.org/I37987034","display_name":"Guangzhou University","ror":"https://ror.org/05ar8rn06","country_code":"CN","type":"education","lineage":["https://openalex.org/I37987034"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuhong Chen","raw_affiliation_strings":["School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China","institution_ids":["https://openalex.org/I37987034"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.567,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.820239,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":"1348","last_page":"1353"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10616","display_name":"Smart Agriculture and AI","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12894","display_name":"Date Palm Research Studies","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12660","display_name":"Plant Disease Management Techniques","score":0.9609,"subfield":{"id":"https://openalex.org/subfields/1110","display_name":"Plant Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5632726}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68819404},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6353656},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6050661},{"id":"https://openalex.org/C22508944","wikidata":"https://www.wikidata.org/wiki/Q568174","display_name":"PEST analysis","level":2,"score":0.59615237},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5632726},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4596268},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.433406},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43178612},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3687919},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C162853370","wikidata":"https://www.wikidata.org/wiki/Q39809","display_name":"Marketing","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdm51629.2021.00169","pdf_url":null,"source":{"id":"https://openalex.org/S4363608061","display_name":"2021 IEEE International Conference on Data Mining (ICDM)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.74,"id":"https://metadata.un.org/sdg/2","display_name":"Zero hunger"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W2083101310","https://openalex.org/W2102605133","https://openalex.org/W2194775991","https://openalex.org/W2558597124","https://openalex.org/W2765407302","https://openalex.org/W2963037989","https://openalex.org/W2963150697","https://openalex.org/W2963855133","https://openalex.org/W2964241181","https://openalex.org/W3018757597","https://openalex.org/W3032016692","https://openalex.org/W3035016091","https://openalex.org/W3106250896","https://openalex.org/W4293584584","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4293226380","https://openalex.org/W3093061381","https://openalex.org/W2969228573","https://openalex.org/W2732398119","https://openalex.org/W2373082819","https://openalex.org/W2371928974","https://openalex.org/W2368617250","https://openalex.org/W2356008311","https://openalex.org/W2349148745","https://openalex.org/W1447685207"],"abstract_inverted_index":{"The":[0,35,197],"frequent":[1],"outbreaks":[2],"of":[3,20,38,57,117,130,156],"agriculture":[4,70],"pests":[5,22],"have":[6],"caused":[7],"heavy":[8],"losses":[9],"in":[10],"crop":[11],"production.":[12],"And":[13],"the":[14,26,55,76,115,127,154,178],"small":[15,131],"size":[16],"and":[17,28,49,82,101,121,150,168,184,187,194,202,206],"high":[18,144],"similarity":[19],"agricultural":[21,58],"bring":[23],"challenges":[24],"to":[25,42,92,113],"prompt":[27],"accurate":[29,205],"pest":[30,52,71,141,163,209],"detection":[31,53,72,142,210],"using":[32],"imaging":[33],"technologies.":[34],"key":[36,99],"impetus":[37],"this":[39],"paper":[40,63],"is":[41,67,90,111,200],"achieve":[43],"a":[44,68,85,106,160],"good":[45,189],"balance":[46],"between":[47],"efficiency":[48],"accuracy":[50,145],"for":[51,94,204],"on":[54,75,147,159],"basis":[56],"image":[59,96],"data":[60],"mining.":[61],"This":[62],"proposes":[64],"Pest-YOLO":[65,137],"which":[66],"real-time":[69,140,207],"method":[73,110,158,176,199],"based":[74,146],"improved":[77,148],"convolutional":[78],"neural":[79],"network":[80,120],"(CNN)":[81],"YOLOv4.":[83,151],"First,":[84],"squeeze-and-excitation":[86],"attention":[87],"mechanism":[88],"module":[89],"introduced":[91],"CNN":[93,149],"mining":[95],"data,":[97],"extracting":[98],"features,":[100],"suppressing":[102],"unrelated":[103],"features.":[104],"Then,":[105],"cross-stage":[107],"multi-feature":[108],"fusion":[109],"designed":[112],"improve":[114],"structure":[116],"feature":[118,128,213],"pyramid":[119],"path":[122],"aggregation":[123],"network,":[124],"thus":[125],"enhancing":[126],"expressiveness":[129],"targets":[132],"like":[133],"pests.":[134],"Finally,":[135],"our":[136,157,175],"realizes":[138],"end-to-end":[139],"with":[143,191],"We":[152],"evaluate":[153],"performance":[155,190],"typical":[161],"large-scale":[162],"dataset":[164],"including":[165,181],"28k":[166],"images":[167],"24":[169],"classes.":[170],"Experimental":[171],"results":[172],"demonstrate":[173],"that":[174],"outperforms":[177],"state-of-the-art":[179],"solutions":[180],"Faster":[182],"R-CNN":[183],"YOLO-based":[185],"detectors,":[186],"achieves":[188],"71.6%":[192],"mAP":[193],"83.5%":[195],"Recall.":[196],"proposed":[198],"effective":[201],"applicable":[203],"intelligent":[208],"without":[211],"expertise":[212],"engineering.":[214]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206980707","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-05T21:46:01.357465","created_date":"2022-01-26"}