{"id":"https://openalex.org/W2527508530","doi":"https://doi.org/10.1109/icdm.2016.0160","title":"Online Unsupervised Multi-view Feature Selection","display_name":"Online Unsupervised Multi-view Feature Selection","publication_year":2016,"publication_date":"2016-12-01","ids":{"openalex":"https://openalex.org/W2527508530","doi":"https://doi.org/10.1109/icdm.2016.0160","mag":"2527508530"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdm.2016.0160","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1609.08286","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5088342375","display_name":"Weixiang Shao","orcid":"https://orcid.org/0000-0003-0510-379X"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"funder","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Weixiang Shao","raw_affiliation_strings":["University of Illinois at Chicago"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071709543","display_name":"Lifang He","orcid":"https://orcid.org/0000-0001-7810-9071"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lifang He","raw_affiliation_strings":["Shenzhen University, China"],"affiliations":[{"raw_affiliation_string":"Shenzhen University, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024393012","display_name":"Chun-Ta Lu","orcid":"https://orcid.org/0000-0001-8573-4975"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"funder","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chun-Ta Lu","raw_affiliation_strings":["University of Illinois at Chicago"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085706537","display_name":"Xiaokai Wei","orcid":"https://orcid.org/0000-0003-2749-7419"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"funder","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaokai Wei","raw_affiliation_strings":["University of Illinois at Chicago"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036357902","display_name":"Philip S. Yu","orcid":"https://orcid.org/0000-0002-3491-5968"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]},{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"funder","lineage":["https://openalex.org/I39422238"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Philip S. Yu","raw_affiliation_strings":["Institute for Data Science, Tsinghua University, China","University of Illinois at Chicago"],"affiliations":[{"raw_affiliation_string":"Institute for Data Science, Tsinghua University, China","institution_ids":["https://openalex.org/I99065089"]},{"raw_affiliation_string":"University of Illinois at Chicago","institution_ids":["https://openalex.org/I39422238"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":59,"citation_normalized_percentile":{"value":0.999837,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"1203","last_page":"1208"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9227,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9024,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.6790912},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.58636695},{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.5619035},{"id":"https://openalex.org/keywords/streaming-data","display_name":"Streaming Data","score":0.44831234},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4343015}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82848513},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.6790912},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.65114516},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5869828},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.58636695},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56507164},{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.5619035},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.5075037},{"id":"https://openalex.org/C2777611316","wikidata":"https://www.wikidata.org/wiki/Q39045282","display_name":"Streaming data","level":2,"score":0.44831234},{"id":"https://openalex.org/C75684735","wikidata":"https://www.wikidata.org/wiki/Q858810","display_name":"Big data","level":2,"score":0.43805942},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4343015},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.43330294},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43307602},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.43113342},{"id":"https://openalex.org/C56372850","wikidata":"https://www.wikidata.org/wiki/Q1050404","display_name":"Sparse matrix","level":3,"score":0.42978856},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.42883012},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.42526513},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4061209},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.15664017},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdm.2016.0160","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1609.08286","pdf_url":"https://arxiv.org/pdf/1609.08286","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1609.08286","pdf_url":"https://arxiv.org/pdf/1609.08286","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.73}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W120692785","https://openalex.org/W141062567","https://openalex.org/W1619226191","https://openalex.org/W1964305049","https://openalex.org/W1968160919","https://openalex.org/W2009727399","https://openalex.org/W2085789144","https://openalex.org/W2105709960","https://openalex.org/W2108119513","https://openalex.org/W2108502868","https://openalex.org/W2128873747","https://openalex.org/W2132211083","https://openalex.org/W2135029798","https://openalex.org/W2149620660","https://openalex.org/W2158933803","https://openalex.org/W2407812036","https://openalex.org/W2527508530","https://openalex.org/W2963111938","https://openalex.org/W3143596294","https://openalex.org/W4235130247","https://openalex.org/W628583573"],"related_works":["https://openalex.org/W4389449520","https://openalex.org/W4281572076","https://openalex.org/W4224062203","https://openalex.org/W4205208899","https://openalex.org/W3013371665","https://openalex.org/W2487681796","https://openalex.org/W2469699777","https://openalex.org/W2205964444","https://openalex.org/W2172283861","https://openalex.org/W1965676450"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"an":[5,20],"Online":[6],"unsupervised":[7,25],"Multi-View":[8],"Feature":[9],"Selection":[10],"method,":[11],"OMVFS,":[12],"which":[13],"deals":[14],"with":[15,36],"large-scale/streaming":[16],"multi-view":[17,66],"data":[18,67,112],"in":[19,110],"online":[21],"fashion.":[22],"OMVFS":[23,63,88,104,128,132],"embeds":[24],"feature":[26],"selection":[27],"into":[28,77],"a":[29],"clustering":[30],"algorithm":[31],"via":[32],"nonnegative":[33],"matrix":[34],"factorization":[35],"sparse":[37],"learning.":[38],"It":[39],"further":[40],"incorporates":[41],"the":[42,47,60,65,74,83,86,91,100,107,111,121,126,139],"graph":[43],"regularization":[44],"to":[45],"preserve":[46],"local":[48],"structure":[49,101],"information":[50,76],"and":[51,71,93,123],"help":[52],"select":[53],"discriminative":[54],"features.":[55],"Instead":[56],"of":[57,99,125],"storing":[58],"all":[59,73],"historical":[61],"data,":[62],"processes":[64],"chunk":[68,70],"by":[69],"aggregates":[72],"necessary":[75],"several":[78],"small":[79],"matrices.":[80],"By":[81],"using":[82],"buffering":[84],"technique,":[85],"proposed":[87,127],"can":[89,105],"reduce":[90],"computational":[92],"storage":[94],"cost":[95],"while":[96],"taking":[97],"advantage":[98],"information.":[102],"Furthermore,":[103],"capture":[106],"concept":[108],"drifts":[109],"streams.":[113],"Extensive":[114],"experiments":[115],"on":[116],"four":[117],"real-world":[118],"datasets":[119],"show":[120],"effectiveness":[122],"efficiency":[124],"method.":[129],"More":[130],"importantly,":[131],"is":[133],"about":[134],"100":[135],"times":[136],"faster":[137],"than":[138],"off-line":[140],"methods.":[141]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2527508530","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":11},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":6},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-04T14:52:59.454689","created_date":"2016-10-07"}