{"id":"https://openalex.org/W4313116950","doi":"https://doi.org/10.1109/icdis55630.2022.00063","title":"Membership Inference Countermeasure With A Partially Synthetic Data Approach","display_name":"Membership Inference Countermeasure With A Partially Synthetic Data Approach","publication_year":2022,"publication_date":"2022-08-01","ids":{"openalex":"https://openalex.org/W4313116950","doi":"https://doi.org/10.1109/icdis55630.2022.00063"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdis55630.2022.00063","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036654292","display_name":"Wakana Maeda","orcid":null},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Wakana Maeda","raw_affiliation_strings":["Fujitsu Limited, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Fujitsu Limited, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023698918","display_name":"Yuji Higuchi","orcid":null},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yuji Higuchi","raw_affiliation_strings":["Fujitsu Limited, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Fujitsu Limited, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050712667","display_name":"Kazuhiro Minami","orcid":"https://orcid.org/0000-0003-4058-1762"},"institutions":[{"id":"https://openalex.org/I4210134673","display_name":"The Institute of Statistical Mathematics","ror":"https://ror.org/03jcejr58","country_code":"JP","type":"facility","lineage":["https://openalex.org/I1319490839","https://openalex.org/I4210134673","https://openalex.org/I4210158934"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kazuhiro Minami","raw_affiliation_strings":["The Institute of Statistical Mathematics, Tokyo, Japan"],"affiliations":[{"raw_affiliation_string":"The Institute of Statistical Mathematics, Tokyo, Japan","institution_ids":["https://openalex.org/I4210134673"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075800271","display_name":"Ikuya Morikawa","orcid":null},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Ikuya Morikawa","raw_affiliation_strings":["Fujitsu Limited, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Fujitsu Limited, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"374","last_page":"381"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9594,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.4627732}],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.79867655},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7144858},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6036295},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5359593},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.4627732},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.46222034},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44454712},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdis55630.2022.00063","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.63}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1515782956","https://openalex.org/W1680797894","https://openalex.org/W2095705004","https://openalex.org/W2109426455","https://openalex.org/W2125272099","https://openalex.org/W2148143831","https://openalex.org/W2473418344","https://openalex.org/W2535690855","https://openalex.org/W2565167788","https://openalex.org/W2783482415","https://openalex.org/W2795435272","https://openalex.org/W2800788706","https://openalex.org/W2884943453","https://openalex.org/W2910022251","https://openalex.org/W2911978475","https://openalex.org/W2954996726","https://openalex.org/W2963378725","https://openalex.org/W3047806505","https://openalex.org/W3100213383","https://openalex.org/W3138815606","https://openalex.org/W3170901302","https://openalex.org/W3214437258","https://openalex.org/W4288296172","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4382315317","https://openalex.org/W4321636575","https://openalex.org/W3186268266","https://openalex.org/W3109499659","https://openalex.org/W2966641257","https://openalex.org/W2741131631","https://openalex.org/W2357796999","https://openalex.org/W2055243143","https://openalex.org/W2045526782","https://openalex.org/W1986418932"],"abstract_inverted_index":{"When":[0],"publishing":[1],"a":[2,50,56,59,141,147,168],"machine":[3],"learning":[4],"model":[5,19,29],"trained":[6,91],"with":[7,92,125],"personal":[8],"data,":[9],"the":[10,28,36,39,46,64,72,80,109,113,123,126,151,160,172,179],"privacy":[11],"threats,":[12],"such":[13],"as":[14,120],"membership":[15,42,73,182],"inference":[16,43,74,183],"attacks":[17],"and":[18,45,63,76],"inversion,":[20],"of":[21,49,58,104,112,150,174,181],"information":[22],"leakage":[23],"on":[24],"training":[25],"data":[26,177],"from":[27],"should":[30],"be":[31,116],"considered.":[32],"This":[33,164],"paper":[34],"explores":[35],"relations":[37],"between":[38],"resistance":[40,100],"against":[41],"attack":[44,75,99],"mixing":[47,143],"ratio":[48],"partially":[51,93,175],"synthetic":[52,61,85,176,186],"dataset,":[53],"which":[54],"is":[55,154],"mixture":[57],"fully":[60,105,127],"dataset":[62,153],"original":[65,152],"dataset.":[66],"In":[67],"our":[68],"experiments,":[69],"we":[70],"considered":[71],"adopted":[77],"perturbation":[78],"using":[79,185],"post-randomization":[81],"method":[82],"to":[83,102,122,132,159,178],"generate":[84],"data.":[86,187],"We":[87],"confirmed":[88],"that":[89,103,140],"models":[90,114,124],"perturbed":[94,106,128],"datasets":[95],"could":[96,115],"achieve":[97],"an":[98],"comparable":[101],"datasets.":[107],"Conversely,":[108],"prediction":[110,162],"accuracy":[111,130],"retained":[117],"more":[118],"effectively":[119],"compared":[121],"whose":[129],"degraded":[131],"random":[133],"guess":[134],"level.":[135],"The":[136],"experiments":[137],"also":[138],"suggest":[139],"high":[142],"ratio,":[144],"i.e.,":[145],"only":[146],"small":[148],"portion":[149],"retained,":[155],"can":[156,166],"potentially":[157],"contribute":[158],"sustaining":[161],"accuracy.":[163],"suggestion":[165],"provide":[167],"potential":[169],"guideline":[170],"about":[171],"tuning":[173],"field":[180],"countermeasure":[184]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4313116950","counts_by_year":[],"updated_date":"2024-12-09T22:00:44.600050","created_date":"2023-01-06"}