{"id":"https://openalex.org/W4289533750","doi":"https://doi.org/10.1109/icde53745.2022.00260","title":"Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning","display_name":"Weakly-supervised Temporal Path Representation Learning with Contrastive Curriculum Learning","publication_year":2022,"publication_date":"2022-05-01","ids":{"openalex":"https://openalex.org/W4289533750","doi":"https://doi.org/10.1109/icde53745.2022.00260"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icde53745.2022.00260","pdf_url":null,"source":{"id":"https://openalex.org/S4363607857","display_name":"2022 IEEE 38th International Conference on Data Engineering (ICDE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2203.16110.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054708051","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0001-7819-2290"},"institutions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries":["DK"],"is_corresponding":false,"raw_author_name":"Sean Bin Yang","raw_affiliation_strings":["Department of Computer Science, Aalborg University, Denmark"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalborg University, Denmark","institution_ids":["https://openalex.org/I891191580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084021933","display_name":"Chenjuan Guo","orcid":"https://orcid.org/0000-0002-4516-4637"},"institutions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries":["DK"],"is_corresponding":false,"raw_author_name":"Chenjuan Guo","raw_affiliation_strings":["Department of Computer Science, Aalborg University, Denmark"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalborg University, Denmark","institution_ids":["https://openalex.org/I891191580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020559625","display_name":"Jilin Hu","orcid":"https://orcid.org/0000-0002-7739-7769"},"institutions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries":["DK"],"is_corresponding":false,"raw_author_name":"Jilin Hu","raw_affiliation_strings":["Department of Computer Science, Aalborg University, Denmark"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalborg University, Denmark","institution_ids":["https://openalex.org/I891191580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072309548","display_name":"Bin Yang","orcid":"https://orcid.org/0000-0002-1658-1079"},"institutions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries":["DK"],"is_corresponding":false,"raw_author_name":"Bin Yang","raw_affiliation_strings":["Department of Computer Science, Aalborg University, Denmark"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalborg University, Denmark","institution_ids":["https://openalex.org/I891191580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077231313","display_name":"Jian Tang","orcid":"https://orcid.org/0000-0002-6819-4185"},"institutions":[{"id":"https://openalex.org/I108192572","display_name":"HEC Montr\u00e9al","ror":"https://ror.org/05ww3wq27","country_code":"CA","type":"funder","lineage":["https://openalex.org/I108192572"]},{"id":"https://openalex.org/I109736498","display_name":"Canadian Institute for Advanced Research","ror":"https://ror.org/01sdtdd95","country_code":"CA","type":"funder","lineage":["https://openalex.org/I109736498"]},{"id":"https://openalex.org/I4210164802","display_name":"Mila - Quebec Artificial Intelligence Institute","ror":"https://ror.org/05c22rx21","country_code":"CA","type":"facility","lineage":["https://openalex.org/I4210164802"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jian Tang","raw_affiliation_strings":["CIFAR AI Research Chair","HEC Montreal, Canada","Mila-Quebec AI Institute"],"affiliations":[{"raw_affiliation_string":"HEC Montreal, Canada","institution_ids":["https://openalex.org/I108192572"]},{"raw_affiliation_string":"CIFAR AI Research Chair","institution_ids":["https://openalex.org/I109736498"]},{"raw_affiliation_string":"Mila-Quebec AI Institute","institution_ids":["https://openalex.org/I4210164802"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029380368","display_name":"Christian S. Jensen","orcid":"https://orcid.org/0000-0002-9697-7670"},"institutions":[{"id":"https://openalex.org/I891191580","display_name":"Aalborg University","ror":"https://ror.org/04m5j1k67","country_code":"DK","type":"funder","lineage":["https://openalex.org/I891191580"]}],"countries":["DK"],"is_corresponding":false,"raw_author_name":"Christian S. Jensen","raw_affiliation_strings":["Department of Computer Science, Aalborg University, Denmark"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalborg University, Denmark","institution_ids":["https://openalex.org/I891191580"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.748,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.933198,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"2873","last_page":"2885"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5802015},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.5654253},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.44563344}],"concepts":[{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.7432302},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6913767},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6155172},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.6061026},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5802015},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.5654253},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.47035718},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.44563344},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4061432},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33329192},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.29227626},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icde53745.2022.00260","pdf_url":null,"source":{"id":"https://openalex.org/S4363607857","display_name":"2022 IEEE 38th International Conference on Data Engineering (ICDE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":null,"pdf_url":"https://arxiv.org/pdf/2203.16110.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":null,"pdf_url":"https://arxiv.org/pdf/2203.16110.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","score":0.44,"id":"https://metadata.un.org/sdg/11"}],"grants":[{"funder":"https://openalex.org/F4320310490","funder_display_name":"Villum Fonden","award_id":"34328,40567"},{"funder":"https://openalex.org/F4320322928","funder_display_name":"Danmarks Frie Forskningsfond","award_id":"8022-00246B,8048-00038B"}],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1924770834","https://openalex.org/W2050604187","https://openalex.org/W2064675550","https://openalex.org/W2135822894","https://openalex.org/W2171590421","https://openalex.org/W2296073425","https://openalex.org/W2551441958","https://openalex.org/W2605174772","https://openalex.org/W2768361919","https://openalex.org/W2785409760","https://openalex.org/W2795142517","https://openalex.org/W2795273206","https://openalex.org/W2798991696","https://openalex.org/W2887997457","https://openalex.org/W2896457183","https://openalex.org/W2897668826","https://openalex.org/W2911826336","https://openalex.org/W2950019211","https://openalex.org/W2952179887","https://openalex.org/W2962756421","https://openalex.org/W2964321699","https://openalex.org/W2987715998","https://openalex.org/W3010512657","https://openalex.org/W3011820231","https://openalex.org/W3012816161","https://openalex.org/W3029687524","https://openalex.org/W3030299187","https://openalex.org/W3034242983","https://openalex.org/W3034571331","https://openalex.org/W3034623328","https://openalex.org/W3035693354","https://openalex.org/W3037671731","https://openalex.org/W3087903024","https://openalex.org/W3103720336","https://openalex.org/W3150739942","https://openalex.org/W3175924508","https://openalex.org/W3187633063","https://openalex.org/W3199097607","https://openalex.org/W3217545443","https://openalex.org/W4214737981","https://openalex.org/W4225862894","https://openalex.org/W4239181501","https://openalex.org/W4287812705","https://openalex.org/W4288275971","https://openalex.org/W4289533938","https://openalex.org/W4289866548","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4389832810","https://openalex.org/W4313561566","https://openalex.org/W4281663961","https://openalex.org/W4220682630","https://openalex.org/W3208888551","https://openalex.org/W3208386644","https://openalex.org/W3181622257","https://openalex.org/W3133533225","https://openalex.org/W2983142544","https://openalex.org/W2891059443"],"abstract_inverted_index":{"In":[0,45],"step":[1],"with":[2,125],"the":[3,36,81,100,116,126,148,162,194,216,224,231,238,252,284],"digitalization":[4],"of":[5,13,39,90,128,153],"transportation,":[6],"we":[7,131,164,197,241],"are":[8,169,176],"witnessing":[9],"a":[10,133,141,154,158,243,301],"growing":[11],"range":[12],"path-based":[14],"smart-city":[15],"applications,":[16,72],"e.g.,":[17,32,181],"travel-time":[18],"estimation":[19],"and":[20,61,65,95,150,171,175,201,210,273,291,294],"travel":[21,268],"path":[22,26,37,55,143,156,204,271,274],"ranking.":[23],"A":[24],"temporal":[25,30,54,62,117,142,151,155,182,203,211],"(TP)":[27],"that":[28,58,66,145,168,251,283,295],"includes":[29],"information,":[31,212],"departure":[33,190],"time,":[34],"into":[35,157],"is":[38,49,286],"fundamental":[40],"to":[41,51,79,98,103,120,173,178,257,288,304],"enable":[42],"such":[43,250],"applications.":[44],"this":[46],"setting,":[47],"it":[48,296],"essential":[50],"learn":[52,111],"generic":[53,112],"representations":[56,227],"(TPRs)":[57],"consider":[59],"spatial":[60,149,209],"correlations":[63],"simultaneously":[64],"can":[67,110,297],"be":[68,298],"used":[69,299],"in":[70],"different":[71,179],"i.e.,":[73,267],"downstream":[74,265],"tasks.":[75],"Existing":[76],"methods":[77,86,109,293],"fail":[78,97],"achieve":[80],"goal":[82],"since":[83],"(i)":[84],"supervised":[85,292,306],"require":[87],"large":[88],"amounts":[89],"task-specific":[91],"labels":[92,167,183],"when":[93],"training":[94,215,259],"thus":[96],"generalize":[99],"obtained":[101],"TPRs":[102],"other":[104],"tasks;":[105],"(ii)":[106],"though":[107],"unsupervised":[108,290],"representations,":[113],"they":[114],"disregard":[115],"aspect,":[118],"leading":[119],"sub-optimal":[121],"results.":[122],"To":[123,160,235],"contend":[124],"limitations":[127],"existing":[129],"solutions,":[130],"propose":[132,140,242],"Weakly-Supervised":[134],"Contrastive":[135],"learning":[136,220,244,253],"model.":[137],"We":[138],"first":[139],"encoder":[144,217],"encodes":[146],"both":[147,208],"information":[152],"TPR.":[159],"train":[161],"encoder,":[163],"introduce":[165],"weak":[166,195],"easy":[170,256],"inexpensive":[172],"obtain,":[174],"relevant":[177],"tasks,":[180,266],"indicating":[184],"peak":[185],"vs.":[186],"off-peak":[187],"hour":[188],"from":[189,255],"times.":[191],"Based":[192],"on":[193,247,276],"labels,":[196],"construct":[198],"meaningful":[199],"positive":[200,225],"negative":[202,232],"samples":[205],"by":[206,221],"considering":[207],"which":[213],"facilities":[214],"using":[218],"contrastive":[219,239],"pulling":[222],"closer":[223],"samples'":[226,233],"while":[228],"pushing":[229],"away":[230],"representations.":[234],"better":[236],"guide":[237],"learning,":[240],"strategy":[245],"based":[246],"Curriculum":[248],"Learning":[249],"performs":[254],"hard":[258],"instances.":[260],"Experimental":[261],"studies":[262],"involving":[263],"three":[264,277],"time":[269],"estimation,":[270],"ranking,":[272],"recommendation,":[275],"road":[278],"networks":[279],"offer":[280],"strong":[281],"evidence":[282],"proposal":[285],"superior":[287],"state-of-the-art":[289],"as":[300],"pre-training":[302],"approach":[303],"enhance":[305],"TPR":[307],"learning.":[308]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4289533750","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2}],"updated_date":"2025-03-19T18:31:53.030450","created_date":"2022-08-03"}