{"id":"https://openalex.org/W3030666455","doi":"https://doi.org/10.1109/icde48307.2020.00033","title":"Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR","display_name":"Efficient Query Processing with Optimistically Compressed Hash Tables & Strings in the USSR","publication_year":2020,"publication_date":"2020-04-01","ids":{"openalex":"https://openalex.org/W3030666455","doi":"https://doi.org/10.1109/icde48307.2020.00033","mag":"3030666455"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icde48307.2020.00033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607857","display_name":"2022 IEEE 38th International Conference on Data Engineering (ICDE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://ir.cwi.nl/pub/30644/30644.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047535581","display_name":"Tim Gubner","orcid":"https://orcid.org/0009-0001-0730-1733"},"institutions":[{"id":"https://openalex.org/I76198965","display_name":"Friedrich Schiller University Jena","ror":"https://ror.org/05qpz1x62","country_code":"DE","type":"funder","lineage":["https://openalex.org/I76198965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Tim Gubner","raw_affiliation_strings":["Friedrich Schiller University Jena"],"affiliations":[{"raw_affiliation_string":"Friedrich Schiller University Jena","institution_ids":["https://openalex.org/I76198965"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046213289","display_name":"Viktor Leis","orcid":"https://orcid.org/0000-0001-5676-8017"},"institutions":[{"id":"https://openalex.org/I76198965","display_name":"Friedrich Schiller University Jena","ror":"https://ror.org/05qpz1x62","country_code":"DE","type":"funder","lineage":["https://openalex.org/I76198965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Viktor Leis","raw_affiliation_strings":["Friedrich Schiller University Jena"],"affiliations":[{"raw_affiliation_string":"Friedrich Schiller University Jena","institution_ids":["https://openalex.org/I76198965"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058712681","display_name":"Peter Boncz","orcid":"https://orcid.org/0000-0001-6256-0140"},"institutions":[{"id":"https://openalex.org/I76198965","display_name":"Friedrich Schiller University Jena","ror":"https://ror.org/05qpz1x62","country_code":"DE","type":"funder","lineage":["https://openalex.org/I76198965"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Peter Boncz","raw_affiliation_strings":["Friedrich Schiller University Jena"],"affiliations":[{"raw_affiliation_string":"Friedrich Schiller University Jena","institution_ids":["https://openalex.org/I76198965"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.151,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.211801,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"301","last_page":"312"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11478","display_name":"Caching and Content Delivery","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.4869231},{"id":"https://openalex.org/keywords/table","display_name":"Table (database)","score":0.42456087}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82101005},{"id":"https://openalex.org/C67388219","wikidata":"https://www.wikidata.org/wiki/Q207440","display_name":"Hash table","level":3,"score":0.7522298},{"id":"https://openalex.org/C99138194","wikidata":"https://www.wikidata.org/wiki/Q183427","display_name":"Hash function","level":2,"score":0.7116916},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.58224565},{"id":"https://openalex.org/C115537543","wikidata":"https://www.wikidata.org/wiki/Q165596","display_name":"Cache","level":2,"score":0.5277869},{"id":"https://openalex.org/C157486923","wikidata":"https://www.wikidata.org/wiki/Q1376436","display_name":"String (physics)","level":2,"score":0.5096917},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.4869231},{"id":"https://openalex.org/C45235069","wikidata":"https://www.wikidata.org/wiki/Q278425","display_name":"Table (database)","level":2,"score":0.42456087},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3982428},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.22253227},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.16427374},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.094628096},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icde48307.2020.00033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607857","display_name":"2022 IEEE 38th International Conference on Data Engineering (ICDE)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://ir.cwi.nl/pub/30644","pdf_url":"https://ir.cwi.nl/pub/30644/30644.pdf","source":{"id":"https://openalex.org/S4306401843","display_name":"Data Archiving and Networked Services (DANS)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1322597698","host_organization_name":"Royal Netherlands Academy of Arts and Sciences","host_organization_lineage":["https://openalex.org/I1322597698"],"host_organization_lineage_names":["Royal Netherlands Academy of Arts and Sciences"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://ir.cwi.nl/pub/30644","pdf_url":"https://ir.cwi.nl/pub/30644/30644.pdf","source":{"id":"https://openalex.org/S4306401843","display_name":"Data Archiving and Networked Services (DANS)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1322597698","host_organization_name":"Royal Netherlands Academy of Arts and Sciences","host_organization_lineage":["https://openalex.org/I1322597698"],"host_organization_lineage_names":["Royal Netherlands Academy of Arts and Sciences"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1645807896","https://openalex.org/W1967601791","https://openalex.org/W1969877208","https://openalex.org/W2005294557","https://openalex.org/W2020463726","https://openalex.org/W2041668559","https://openalex.org/W2054046497","https://openalex.org/W2055774867","https://openalex.org/W2072541977","https://openalex.org/W2096496252","https://openalex.org/W2099035968","https://openalex.org/W2117546628","https://openalex.org/W2123686039","https://openalex.org/W2124645273","https://openalex.org/W2124851765","https://openalex.org/W2140453381","https://openalex.org/W2153084230","https://openalex.org/W2163422235","https://openalex.org/W2167911783","https://openalex.org/W2182331413","https://openalex.org/W2227629474","https://openalex.org/W2292693431","https://openalex.org/W2295448598","https://openalex.org/W2338162861","https://openalex.org/W2435931733","https://openalex.org/W2439390339","https://openalex.org/W2440477515","https://openalex.org/W2777733174","https://openalex.org/W2794610196","https://openalex.org/W2798926543","https://openalex.org/W2806056912","https://openalex.org/W2912601938","https://openalex.org/W2912940609","https://openalex.org/W3138367763"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4387251676","https://openalex.org/W4385261619","https://openalex.org/W4321353415","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2144265691","https://openalex.org/W2130974462","https://openalex.org/W1835589799","https://openalex.org/W1605991620"],"abstract_inverted_index":{"Modern":[0],"query":[1,9,12],"engines":[2],"rely":[3],"heavily":[4],"on":[5,63],"hash":[6,22,53,81],"tables":[7,23],"for":[8],"processing.":[10],"Overall":[11],"performance":[13,149,165],"and":[14,24,48,69,125,147,166],"memory":[15,127,143],"footprint":[16],"is":[17],"often":[18],"determined":[19],"by":[20,106,145,150],"how":[21],"the":[25,75,80,112,136],"tuples":[26],"within":[27],"them":[28],"are":[29,99],"represented.":[30],"In":[31],"this":[32,41],"work,":[33],"we":[34,159,169],"propose":[35],"three":[36],"complementary":[37],"techniques":[38,132],"to":[39,51,152,174],"improve":[40],"representation:":[42],"Domain-Guided":[43],"Prefix":[44],"Suppression":[45],"bit-packs":[46],"keys":[47],"values":[49,60],"tightly":[50],"reduce":[52],"table":[54,82],"record":[55],"width.":[56],"Optimistic":[57],"Splitting":[58],"decomposes":[59],"(and":[61],"operations":[62,121],"them)":[64],"into":[65,133],"(operations":[66],"on)":[67],"frequently-accessed":[68],"infrequently-accessed":[70,76],"value":[71,77],"slices.":[72],"By":[73],"removing":[74],"slices":[78],"from":[79],"record,":[83],"it":[84],"improves":[85,148],"cache":[86],"locality.":[87],"The":[88],"Unique":[89],"Strings":[90],"Self-aligned":[91],"Region":[92],"(USSR)":[93],"accelerates":[94],"handling":[95],"frequently-occurring":[96],"strings,":[97],"which":[98],"very":[100],"common":[101],"in":[102,164,167],"real-world":[103,156],"data":[104],"sets,":[105],"creating":[107],"an":[108],"on-the-fly":[109],"dictionary":[110],"of":[111,172],"most":[113],"frequent":[114],"strings.":[115],"This":[116],"allows":[117],"executing":[118],"many":[119],"string":[120],"with":[122],"integer":[123],"logic":[124],"reduces":[126,141],"pressure.":[128],"We":[129],"integrated":[130],"these":[131],"Vectorwise.":[134],"On":[135,154],"TPC-H":[137],"benchmark,":[138],"our":[139],"approach":[140],"peak":[142],"consumption":[144],"2-4\u00d7":[146],"up":[151,173],"1.5\u00d7.":[153],"a":[155,161],"BI":[157],"workload,":[158],"measured":[160],"2\u00d7":[162],"improvement":[163],"micro-benchmarks":[168],"observed":[170],"speedups":[171],"25\u00d7.":[175]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3030666455","counts_by_year":[{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-21T10:23:45.854180","created_date":"2020-06-05"}