{"id":"https://openalex.org/W3003332481","doi":"https://doi.org/10.1109/icdar.2019.00228","title":"Speeding-up the Handwritten Signature Segmentation Process through an Optimized Fully Convolutional Neural Network","display_name":"Speeding-up the Handwritten Signature Segmentation Process through an Optimized Fully Convolutional Neural Network","publication_year":2019,"publication_date":"2019-09-01","ids":{"openalex":"https://openalex.org/W3003332481","doi":"https://doi.org/10.1109/icdar.2019.00228","mag":"3003332481"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2019.00228","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5070771992","display_name":"Paloma G. S. Silva","orcid":null},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Paloma G. S. Silva","raw_affiliation_strings":["Polytechnic School, University of Pernambuco, Pernambuco, Brazil"],"affiliations":[{"raw_affiliation_string":"Polytechnic School, University of Pernambuco, Pernambuco, Brazil","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079447840","display_name":"A. M. L. Celso","orcid":null},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Celso A. M. L. Junior","raw_affiliation_strings":["University of Pernambuco, Callere Document Solutions"],"affiliations":[{"raw_affiliation_string":"University of Pernambuco, Callere Document Solutions","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023998002","display_name":"Estanislau Lima","orcid":"https://orcid.org/0000-0002-8373-5357"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Estanislau B. Lima","raw_affiliation_strings":["University of Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"University of Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5049490188","display_name":"Byron Leite Dantas Bezerra","orcid":"https://orcid.org/0000-0002-8327-9734"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Byron L. D. Bezerra","raw_affiliation_strings":["Polytechnic School, University of Pernambuco, Pernambuco, Brazil"],"affiliations":[{"raw_affiliation_string":"Polytechnic School, University of Pernambuco, Pernambuco, Brazil","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.386,"has_fulltext":false,"cited_by_count":8,"citation_normalized_percentile":{"value":0.483808,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1417","last_page":"1423"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signature","display_name":"Signature (topology)","score":0.50878626}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.8093822},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7875949},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6380439},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.5575032},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5560895},{"id":"https://openalex.org/C2779696439","wikidata":"https://www.wikidata.org/wiki/Q7512811","display_name":"Signature (topology)","level":2,"score":0.50878626},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4938067},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.052630097},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2019.00228","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.78}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W2102605133","https://openalex.org/W2106285096","https://openalex.org/W2108598243","https://openalex.org/W2118002292","https://openalex.org/W2158698691","https://openalex.org/W2163605009","https://openalex.org/W2506760585","https://openalex.org/W2538864697","https://openalex.org/W2570343428","https://openalex.org/W2573363147","https://openalex.org/W2604979261","https://openalex.org/W2618530766","https://openalex.org/W2744710511","https://openalex.org/W2798826627","https://openalex.org/W2807321692","https://openalex.org/W2885112059","https://openalex.org/W2905941839","https://openalex.org/W2906045148","https://openalex.org/W2915106267","https://openalex.org/W2952632681","https://openalex.org/W2964010994","https://openalex.org/W3098052913","https://openalex.org/W3145395434","https://openalex.org/W4239271721","https://openalex.org/W584604155"],"related_works":["https://openalex.org/W4321487865","https://openalex.org/W4313906399","https://openalex.org/W4293226380","https://openalex.org/W4239306820","https://openalex.org/W3030774134","https://openalex.org/W2811106690","https://openalex.org/W2590798552","https://openalex.org/W2535275505","https://openalex.org/W2168674042","https://openalex.org/W1671124163"],"abstract_inverted_index":{"The":[0,30,151],"handwritten":[1,70,105,161],"signature":[2,35,50,106,162],"is":[3,36,52],"the":[4,33,77,101,117,120,125,130,148,160,166],"most":[5],"used":[6,18,37,110,140],"method":[7],"of":[8,25,32,63,93,119],"identity":[9,44],"authentication.":[10],"Due":[11],"to":[12,38,80,115,146],"their":[13],"nature,":[14],"signatures":[15],"can":[16,58],"be":[17],"as":[19],"an":[20,90],"agreement":[21],"in":[22,60,113],"many":[23,73],"types":[24],"documentation":[26],"with":[27,48,65,68,136],"legal":[28],"repercussions.":[29],"validation":[31],"firmed":[34],"prevent":[39,124],"frauds,":[40],"fake":[41],"documents,":[42],"and":[43,72,123,138,172],"checking.":[45],"However,":[46],"working":[47],"automated":[49],"verification":[51],"a":[53,82,94],"challenging":[54],"task":[55],"because":[56],"it":[57],"appear":[59],"any":[61],"part":[62],"documents":[64],"complex":[66],"backgrounds,":[67],"logos,":[69],"texts,":[71],"different":[74,142],"patterns.":[75],"Besides,":[76],"application":[78],"needs":[79],"consider":[81],"real-time":[83],"response.":[84],"In":[85],"this":[86],"paper,":[87],"we":[88,109,139],"propose":[89],"optimized":[91],"architecture":[92,103],"fully":[95],"convolutional":[96],"neural":[97],"network":[98],"based":[99],"on":[100],"U-Net":[102],"for":[104],"segmentation.":[107],"Furthermore,":[108],"data":[111,143],"augmentation":[112,144],"order":[114],"increase":[116,147],"diversity":[118],"available":[121],"dataset":[122,149],"overfitting":[126],"problem":[127],"when":[128],"training":[129],"proposed":[131,157],"model.":[132],"We":[133],"conducted":[134],"experiments":[135],"DSSigDataset,":[137],"four":[141],"techniques":[145],"size.":[150],"experimental":[152],"results":[153],"show":[154],"that":[155],"our":[156],"approach":[158],"speed-up":[159],"segmentation":[163],"task,":[164],"at":[165],"same":[167],"time,":[168],"achieving":[169],"higher":[170],"accuracy":[171],"lower":[173],"variance":[174],"than":[175],"previous":[176],"works.":[177]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3003332481","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":4}],"updated_date":"2025-01-22T11:39:35.336658","created_date":"2020-02-07"}