{"id":"https://openalex.org/W2785672431","doi":"https://doi.org/10.1109/icdar.2017.187","title":"Deep Learning System for Automatic License Plate Detection and Recognition","display_name":"Deep Learning System for Automatic License Plate Detection and Recognition","publication_year":2017,"publication_date":"2017-11-01","ids":{"openalex":"https://openalex.org/W2785672431","doi":"https://doi.org/10.1109/icdar.2017.187","mag":"2785672431"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2017.187","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007423749","display_name":"Zied Selmi","orcid":"https://orcid.org/0000-0003-2846-6104"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":false,"raw_author_name":"Zied Selmi","raw_affiliation_strings":["REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064452305","display_name":"Mohamed Ben Halima","orcid":"https://orcid.org/0000-0002-3224-2552"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":false,"raw_author_name":"Mohamed Ben Halima","raw_affiliation_strings":["REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5053613060","display_name":"Adel M. Alimi","orcid":"https://orcid.org/0000-0002-0642-3384"},"institutions":[{"id":"https://openalex.org/I142899784","display_name":"University of Sfax","ror":"https://ror.org/04d4sd432","country_code":"TN","type":"education","lineage":["https://openalex.org/I142899784"]}],"countries":["TN"],"is_corresponding":false,"raw_author_name":"Adel M. Alimi","raw_affiliation_strings":["REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia"],"affiliations":[{"raw_affiliation_string":"REGIM-Lab: Research Groups in Intelligent Machines, University of Sfax, ENIS BP 1173, Sfax, Tunisia","institution_ids":["https://openalex.org/I142899784"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":12.827,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":145,"citation_normalized_percentile":{"value":0.999265,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"1132","last_page":"1138"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9717,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10388","display_name":"Advanced Steganography and Watermarking Techniques","score":0.9424,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4889518},{"id":"https://openalex.org/keywords/optical-character-recognition","display_name":"Optical character recognition","score":0.47036693}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79768133},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7102481},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.60811985},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.59906787},{"id":"https://openalex.org/C2780560020","wikidata":"https://www.wikidata.org/wiki/Q79719","display_name":"License","level":2,"score":0.58741575},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.576423},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.55120003},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.51675695},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4889518},{"id":"https://openalex.org/C546480517","wikidata":"https://www.wikidata.org/wiki/Q167555","display_name":"Optical character recognition","level":3,"score":0.47036693},{"id":"https://openalex.org/C2987247673","wikidata":"https://www.wikidata.org/wiki/Q167555","display_name":"Character recognition","level":3,"score":0.46554005},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46190315},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4610829},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.4505381},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44722784},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.44387656},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.438174},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.415343},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.29903144},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2017.187","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.66,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1489618543","https://openalex.org/W1534935829","https://openalex.org/W1563297281","https://openalex.org/W1579279110","https://openalex.org/W1597931944","https://openalex.org/W1600270397","https://openalex.org/W1975174385","https://openalex.org/W1975399404","https://openalex.org/W1977582554","https://openalex.org/W1992732951","https://openalex.org/W1997245199","https://openalex.org/W1998042868","https://openalex.org/W2003486614","https://openalex.org/W2024121930","https://openalex.org/W2024582606","https://openalex.org/W2030326191","https://openalex.org/W2039592808","https://openalex.org/W2057175746","https://openalex.org/W2071682987","https://openalex.org/W2098789383","https://openalex.org/W2106073265","https://openalex.org/W2113417724","https://openalex.org/W2120866931","https://openalex.org/W2122840423","https://openalex.org/W2125405759","https://openalex.org/W2126297944","https://openalex.org/W2140132917","https://openalex.org/W2145621224","https://openalex.org/W2152366524","https://openalex.org/W2152444980","https://openalex.org/W2157358412","https://openalex.org/W2165465987","https://openalex.org/W2171786422","https://openalex.org/W2550229148","https://openalex.org/W2562308138","https://openalex.org/W2575354312","https://openalex.org/W2579459456","https://openalex.org/W2597065416","https://openalex.org/W2626394981","https://openalex.org/W4213116910","https://openalex.org/W4248202654"],"related_works":["https://openalex.org/W4312612713","https://openalex.org/W2570673113","https://openalex.org/W2392545299","https://openalex.org/W2369368417","https://openalex.org/W2364333216","https://openalex.org/W2356609883","https://openalex.org/W2100767492","https://openalex.org/W2098577506","https://openalex.org/W2062129971","https://openalex.org/W1941102849"],"abstract_inverted_index":{"The":[0,253],"detection":[1,90,141,174],"and":[2,29,42,49,75,91,113,142,149,175,190,230,242,281],"recognition":[3,92,143,176],"of":[4,16,36,67,72,105,144,215,255,287,293],"a":[5,11,26,103,222,246],"vehicle":[6,21],"License":[7],"Plate":[8],"(LP)":[9],"is":[10,25,183,259],"key":[12],"technique":[13],"in":[14,33,65,82,85,146,166,237],"most":[15],"the":[17,34,55,89,140,205,213,228,235,256,288,291,294],"applications":[18],"related":[19],"to":[20,47,54,63,87,123,157,226,232],"movement.":[22],"Moreover,":[23],"it":[24],"quite":[27],"popular":[28],"active":[30],"research":[31],"topic":[32],"field":[35,84],"image":[37,275],"processing.":[38],"Different":[39],"methods,":[40],"techniques":[41],"algorithms":[43],"have":[44],"been":[45,100],"developed":[46],"detect":[48,194],"recognize":[50,233],"LPs.":[51],"Nevertheless,":[52],"due":[53],"LP":[56,173,229],"characteristics":[57],"that":[58],"vary":[59],"from":[60,131],"one":[61],"country":[62],"another":[64],"terms":[66],"numbering":[68],"system,":[69],"colors,":[70],"language":[71],"characters,":[73],"fonts":[74],"size.":[76],"Further":[77],"investigations":[78],"are":[79],"still":[80],"needed":[81],"this":[83,97,138,167],"order":[86],"make":[88,124],"process":[93],"very":[94,134],"efficient.":[95],"Although":[96],"domain":[98],"has":[99],"covered":[101],"by":[102],"lot":[104],"researchers,":[106],"various":[107,268],"existing":[108],"systems":[109],"operate":[110],"under":[111,150,267],"well-defined":[112],"controlled":[114],"conditions.":[115],"For":[116,137,162],"example,":[117],"some":[118],"frameworks":[119],"require":[120],"complicated":[121],"hardware":[122],"good":[125,160],"quality":[126],"images":[127,130,266],"or":[128],"capture":[129],"vehicles":[132],"with":[133,159,250],"slow":[135],"speed.":[136],"reason":[139],"LPs":[145],"different":[147],"conditions":[148],"several":[151],"climatic":[152],"variations":[153],"remains":[154],"always":[155],"difficult":[156],"realize":[158],"results.":[161],"that,":[163],"we":[164,220],"present":[165],"paper":[168],"an":[169,195],"automatic":[170],"system":[171,258],"for":[172,212],"based":[177],"on":[178,261],"deep":[179],"learning":[180],"approach,":[181],"which":[182,264],"divided":[184],"into":[185],"three":[186],"parts:":[187],"detection,":[188],"segmentation,":[189],"character":[191],"recognition.":[192],"To":[193],"LP,":[196],"many":[197],"pretreatment":[198],"steps":[199,225],"should":[200],"be":[201],"made":[202],"before":[203],"applying":[204],"first":[206],"Convolution":[207],"Neural":[208],"Network":[209],"(CNN)":[210],"model":[211,249],"classification":[214],"plates":[216],"/":[217],"non-plates.":[218],"Subsequently,":[219],"apply":[221],"few":[223],"pre-processing":[224],"segment":[227],"finally":[231],"all":[234],"characters":[236],"upper":[238],"case":[239],"format":[240],"(A-Z)":[241],"digits":[243],"(0-9),":[244],"using":[245],"second":[247],"CNN":[248],"37":[251],"classes.":[252],"performance":[254],"suggested":[257,295],"tested":[260],"two":[262],"datasets":[263],"contain":[265],"conditions,":[269],"such":[270],"as":[271],"poor":[272],"picture":[273],"quality,":[274],"perspective":[276],"distortion,":[277],"bright":[278],"day,":[279],"night":[280],"complex":[282],"environment.":[283],"A":[284],"great":[285],"percentage":[286],"results":[289],"show":[290],"accuracy":[292],"system.":[296]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2785672431","counts_by_year":[{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":28},{"year":2022,"cited_by_count":27},{"year":2021,"cited_by_count":28},{"year":2020,"cited_by_count":23},{"year":2019,"cited_by_count":19},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":1}],"updated_date":"2025-01-02T16:02:19.004181","created_date":"2018-02-23"}