{"id":"https://openalex.org/W1988311473","doi":"https://doi.org/10.1109/icdar.2011.118","title":"Discriminative Bernoulli Mixture Models for Handwritten Digit Recognition","display_name":"Discriminative Bernoulli Mixture Models for Handwritten Digit Recognition","publication_year":2011,"publication_date":"2011-09-01","ids":{"openalex":"https://openalex.org/W1988311473","doi":"https://doi.org/10.1109/icdar.2011.118","mag":"1988311473"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2011.118","pdf_url":null,"source":{"id":"https://openalex.org/S4306419356","display_name":"International Conference on Document Analysis and Recognition","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://riunet.upv.es/bitstream/10251/50140/2/icdar11_cameraready.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101428553","display_name":"Adri\u00e0 Gim\u00e9nez","orcid":"https://orcid.org/0000-0002-3822-5526"},"institutions":[],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Adria Gimenez","raw_affiliation_strings":["DSIC, Univ. Politec. de Valencia, Valencia, Spain"],"affiliations":[{"raw_affiliation_string":"DSIC, Univ. Politec. de Valencia, Valencia, Spain","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019869698","display_name":"Jes\u00fas Andr\u00e9s-Ferrer","orcid":null},"institutions":[],"countries":["ES"],"is_corresponding":false,"raw_author_name":"J. Andres-Ferrer","raw_affiliation_strings":["DSIC, Univ. Politec. de Valencia, Valencia, Spain"],"affiliations":[{"raw_affiliation_string":"DSIC, Univ. Politec. de Valencia, Valencia, Spain","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040605861","display_name":"Alfons Juan","orcid":"https://orcid.org/0000-0002-9984-4072"},"institutions":[],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Alfons Juan","raw_affiliation_strings":["DSIC, Univ. Politec. de Valencia, Valencia, Spain"],"affiliations":[{"raw_affiliation_string":"DSIC, Univ. Politec. de Valencia, Valencia, Spain","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101195845","display_name":"Nicol \u0301s Serrano","orcid":null},"institutions":[],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Nicol\u00b4s Serrano","raw_affiliation_strings":["DSIC, Univ. Politec. de Valencia, Valencia, Spain"],"affiliations":[{"raw_affiliation_string":"DSIC, Univ. Politec. de Valencia, Valencia, Spain","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.949,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":9,"citation_normalized_percentile":{"value":0.689799,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"558","last_page":"562"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9949,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Advanced Statistical Methods and Models","score":0.9797,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.88244945},{"id":"https://openalex.org/keywords/generative-model","display_name":"Generative model","score":0.5101169},{"id":"https://openalex.org/keywords/binary-classification","display_name":"Binary classification","score":0.42111075}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.88244945},{"id":"https://openalex.org/C152361515","wikidata":"https://www.wikidata.org/wiki/Q181328","display_name":"Bernoulli's principle","level":2,"score":0.81299263},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7014006},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.61329985},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6053437},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5325735},{"id":"https://openalex.org/C167966045","wikidata":"https://www.wikidata.org/wiki/Q5532625","display_name":"Generative model","level":3,"score":0.5101169},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.46385905},{"id":"https://openalex.org/C152139883","wikidata":"https://www.wikidata.org/wiki/Q252973","display_name":"Mutual information","level":2,"score":0.4304805},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.4293574},{"id":"https://openalex.org/C66905080","wikidata":"https://www.wikidata.org/wiki/Q17005494","display_name":"Binary classification","level":3,"score":0.42111075},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32172823},{"id":"https://openalex.org/C39890363","wikidata":"https://www.wikidata.org/wiki/Q36108","display_name":"Generative grammar","level":2,"score":0.26473337},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.23035997},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icdar.2011.118","pdf_url":null,"source":{"id":"https://openalex.org/S4306419356","display_name":"International Conference on Document Analysis and Recognition","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://hdl.handle.net/10251/50140","pdf_url":"https://riunet.upv.es/bitstream/10251/50140/2/icdar11_cameraready.pdf","source":{"id":"https://openalex.org/S4306400639","display_name":"RiuNet (Universitat Polit\u00e8cnica de Val\u00e8ncia)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I60053951","host_organization_name":"Universitat Polit\u00e8cnica de Val\u00e8ncia","host_organization_lineage":["https://openalex.org/I60053951"],"host_organization_lineage_names":["Universitat Polit\u00e8cnica de Val\u00e8ncia"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://hdl.handle.net/10251/50140","pdf_url":"https://riunet.upv.es/bitstream/10251/50140/2/icdar11_cameraready.pdf","source":{"id":"https://openalex.org/S4306400639","display_name":"RiuNet (Universitat Polit\u00e8cnica de Val\u00e8ncia)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I60053951","host_organization_name":"Universitat Polit\u00e8cnica de Val\u00e8ncia","host_organization_lineage":["https://openalex.org/I60053951"],"host_organization_lineage_names":["Universitat Polit\u00e8cnica de Val\u00e8ncia"],"type":"repository"},"license":"cc-by-nc-nd","license_id":"https://openalex.org/licenses/cc-by-nc-nd","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.76,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1867464459","https://openalex.org/W2001792610","https://openalex.org/W2049633694","https://openalex.org/W2053033904","https://openalex.org/W2123772730","https://openalex.org/W2143908786","https://openalex.org/W2154895996","https://openalex.org/W2156928014","https://openalex.org/W2165713005","https://openalex.org/W2167782134","https://openalex.org/W2800394774","https://openalex.org/W3017143921","https://openalex.org/W4242950359","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W3174028392","https://openalex.org/W3163690399","https://openalex.org/W2899588557","https://openalex.org/W2466816617","https://openalex.org/W2375330620","https://openalex.org/W2365318811","https://openalex.org/W2136503713","https://openalex.org/W2000517284","https://openalex.org/W1970834875","https://openalex.org/W1619264321"],"abstract_inverted_index":{"Bernoulli-based":[0],"models":[1,34,84],"such":[2,65,85],"as":[3,66,86],"Bernoulli":[4,7,95,126,139],"mixtures":[5],"or":[6],"HMMs":[8],"(BHMMs),":[9],"have":[10],"been":[11],"successfully":[12],"applied":[13,148],"to":[14,26,36,81,121,124,149],"several":[15],"handwritten":[16,30],"text":[17],"recognition":[18,25,154],"(HTR)":[19],"tasks":[20],"which":[21],"range":[22],"from":[23],"character":[24],"continuous":[27],"and":[28],"isolated":[29],"words.":[31],"All":[32],"these":[33],"belong":[35],"the":[37,53,57,94,109,125],"generative":[38],"model":[39,103,118],"family":[40],"and,":[41],"hence,":[42],"are":[43,61],"usually":[44],"trained":[45],"by":[46,93],"(joint)":[47],"maximum":[48,67,89],"likelihood":[49],"estimation":[50],"(MLE).":[51],"Despite":[52],"good":[54],"properties":[55],"of":[56,112],"MLE":[58],"criterion,":[59],"there":[60],"better":[62],"training":[63,136,145],"criteria":[64],"mutual":[68],"information":[69],"(MMI).":[70],"The":[71,116,142],"MMI":[72],"is":[73,78,107,119,147],"a":[74,101,134,150],"widespread":[75],"criterion":[76],"that":[77],"mainly":[79],"employed":[80],"train":[82],"discriminative":[83,135,144],"log-linear":[87,102],"(or":[88],"entropy)":[90],"models.":[91,141],"Inspired":[92],"mixture":[96,111,127,140],"classifier,":[97],"in":[98],"this":[99,130],"work":[100],"for":[104,138],"binary":[105],"data":[106],"proposed,":[108],"so-called":[110],"multi-class":[113],"logistic":[114],"regression.":[115],"proposed":[117,143],"proved":[120],"be":[122],"equivalent":[123],"classifier.":[128],"In":[129],"way,":[131],"we":[132],"give":[133],"framework":[137,146],"well-known":[151],"Indian":[152],"digit":[153],"task.":[155]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1988311473","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-04-20T15:08:12.875906","created_date":"2016-06-24"}