{"id":"https://openalex.org/W2053757806","doi":"https://doi.org/10.1109/iccw.2013.6649370","title":"Target identification in foliage environment using selected bispectra and Extreme Learning Machine","display_name":"Target identification in foliage environment using selected bispectra and Extreme Learning Machine","publication_year":2013,"publication_date":"2013-06-01","ids":{"openalex":"https://openalex.org/W2053757806","doi":"https://doi.org/10.1109/iccw.2013.6649370","mag":"2053757806"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccw.2013.6649370","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077348863","display_name":"Minglei You","orcid":"https://orcid.org/0000-0002-7445-1571"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minglei You","raw_affiliation_strings":["Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090606731","display_name":"Ting Jiang","orcid":"https://orcid.org/0000-0003-3598-3804"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ting Jiang","raw_affiliation_strings":["Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Key Lab. of Universal Wireless Commun., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.161,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.334168,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"941","last_page":"945"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11739","display_name":"Microwave Imaging and Scattering Analysis","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12131","display_name":"Wireless Signal Modulation Classification","score":0.995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/transceiver","display_name":"Transceiver","score":0.7204764},{"id":"https://openalex.org/keywords/extreme-learning-machine","display_name":"Extreme Learning Machine","score":0.7163655},{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.44628945},{"id":"https://openalex.org/keywords/wideband","display_name":"Wideband","score":0.4360692},{"id":"https://openalex.org/keywords/impulse-radio","display_name":"Impulse Radio","score":0.42021012}],"concepts":[{"id":"https://openalex.org/C7720470","wikidata":"https://www.wikidata.org/wiki/Q954187","display_name":"Transceiver","level":3,"score":0.7204764},{"id":"https://openalex.org/C2780150128","wikidata":"https://www.wikidata.org/wiki/Q21948731","display_name":"Extreme learning machine","level":3,"score":0.7163655},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6637696},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.66375875},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.54654413},{"id":"https://openalex.org/C197424946","wikidata":"https://www.wikidata.org/wiki/Q1165717","display_name":"Waveform","level":3,"score":0.54225475},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5374563},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.51228297},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5113213},{"id":"https://openalex.org/C70836080","wikidata":"https://www.wikidata.org/wiki/Q837940","display_name":"Impulse (physics)","level":2,"score":0.46167493},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.44628945},{"id":"https://openalex.org/C2780202535","wikidata":"https://www.wikidata.org/wiki/Q4524457","display_name":"Wideband","level":2,"score":0.4360692},{"id":"https://openalex.org/C2988552953","wikidata":"https://www.wikidata.org/wiki/Q851424","display_name":"Impulse radio","level":3,"score":0.42021012},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35136867},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.33376613},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.31191623},{"id":"https://openalex.org/C21916231","wikidata":"https://www.wikidata.org/wiki/Q851424","display_name":"Ultra-wideband","level":2,"score":0.30405784},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.23521748},{"id":"https://openalex.org/C555944384","wikidata":"https://www.wikidata.org/wiki/Q249","display_name":"Wireless","level":2,"score":0.16533238},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14217126},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13988924},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccw.2013.6649370","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/15","score":0.58,"display_name":"Life on land"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W146142918","https://openalex.org/W2066476028","https://openalex.org/W2071860971","https://openalex.org/W2096415878","https://openalex.org/W2111072639","https://openalex.org/W2115263445","https://openalex.org/W2137790917","https://openalex.org/W2158313596","https://openalex.org/W2177833270"],"related_works":["https://openalex.org/W4291923671","https://openalex.org/W3142774203","https://openalex.org/W2940221814","https://openalex.org/W2381212854","https://openalex.org/W2370430503","https://openalex.org/W2169533525","https://openalex.org/W2110290642","https://openalex.org/W1996405237","https://openalex.org/W1524133590","https://openalex.org/W1518369552"],"abstract_inverted_index":{"In":[0,43],"this":[1,44,98],"paper,":[2],"a":[3,60],"novel":[4],"method":[5,15,99],"of":[6],"target":[7,89],"identification":[8],"in":[9,105],"foliage":[10,41,68,106],"environment":[11],"is":[12,74,85],"presented.":[13],"This":[14],"takes":[16],"the":[17,23,26,78,88],"received":[18],"signal":[19],"waveforms":[20],"to":[21,59,64,76],"identify":[22,65],"targets":[24,66],"between":[25],"communication":[27],"transceivers,":[28],"which":[29,57],"are":[30],"measured":[31],"by":[32],"Ultra":[33],"WideBand":[34],"(UWB)":[35],"Impulse":[36],"Radio":[37],"(IR)":[38],"equipment":[39],"under":[40,67],"environment.":[42,69,107],"way,":[45],"most":[46],"existing":[47],"UWB-IR":[48],"transceivers":[49],"can":[50],"be":[51],"exploited":[52],"as":[53,87],"detecting":[54],"radar":[55],"sensors,":[56],"leads":[58],"potential":[61],"low-cost":[62],"way":[63],"The":[70],"selected":[71],"bispectra":[72],"algorithm":[73],"applied":[75],"extract":[77],"feature":[79],"vector,":[80],"and":[81],"Extreme":[82],"Learning":[83],"Machine":[84],"used":[86],"classifier.":[90],"Experiments":[91],"with":[92],"real-world":[93],"data":[94],"samples":[95],"indicate":[96],"that":[97],"has":[100],"an":[101],"excellent":[102],"classification":[103],"performance":[104]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2053757806","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2015,"cited_by_count":1}],"updated_date":"2025-01-22T08:36:24.742566","created_date":"2016-06-24"}