{"id":"https://openalex.org/W4390190155","doi":"https://doi.org/10.1109/iccvw60793.2023.00357","title":"Memory-augmented Variational Adaptation for Online Few-shot Segmentation","display_name":"Memory-augmented Variational Adaptation for Online Few-shot Segmentation","publication_year":2023,"publication_date":"2023-10-02","ids":{"openalex":"https://openalex.org/W4390190155","doi":"https://doi.org/10.1109/iccvw60793.2023.00357"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw60793.2023.00357","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041019033","display_name":"Jie Liu","orcid":"https://orcid.org/0000-0002-1327-1315"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Jie Liu","raw_affiliation_strings":["University of Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077690631","display_name":"Yingjun Du","orcid":"https://orcid.org/0000-0001-7537-6457"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Yingjun Du","raw_affiliation_strings":["University of Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032171811","display_name":"Zehao Xiao","orcid":"https://orcid.org/0000-0001-6080-202X"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Zehao Xiao","raw_affiliation_strings":["University of Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024508073","display_name":"Cees G. M. Snoek","orcid":"https://orcid.org/0000-0001-9092-1556"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Cees G.M Snoek","raw_affiliation_strings":["University of Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5087851185","display_name":"Jan\u2010Jakob Sonke","orcid":"https://orcid.org/0000-0001-5155-5274"},"institutions":[{"id":"https://openalex.org/I2898336195","display_name":"The Netherlands Cancer Institute","ror":"https://ror.org/03xqtf034","country_code":"NL","type":"healthcare","lineage":["https://openalex.org/I2898336195"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Jan-Jakob Sonke","raw_affiliation_strings":["The Netherlands Cancer Institute, Netherlands"],"affiliations":[{"raw_affiliation_string":"The Netherlands Cancer Institute, Netherlands","institution_ids":["https://openalex.org/I2898336195"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002625178","display_name":"Efstratios Gavves","orcid":"https://orcid.org/0000-0001-8947-1332"},"institutions":[{"id":"https://openalex.org/I887064364","display_name":"University of Amsterdam","ror":"https://ror.org/04dkp9463","country_code":"NL","type":"education","lineage":["https://openalex.org/I887064364"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Efstratios Gavves","raw_affiliation_strings":["University of Amsterdam, Netherlands"],"affiliations":[{"raw_affiliation_string":"University of Amsterdam, Netherlands","institution_ids":["https://openalex.org/I887064364"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.705,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.606989,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"3316","last_page":"3325"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.75063646},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.56266326},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4960762},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.49495262},{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.41310394}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7717968},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.75063646},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.63135237},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5958851},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5753653},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.56266326},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4960762},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.49495262},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.48523855},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43712038},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42256072},{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.41310394},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3237713},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10020709},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw60793.2023.00357","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1537838346","https://openalex.org/W1570963478","https://openalex.org/W1959608418","https://openalex.org/W2031489346","https://openalex.org/W2064675550","https://openalex.org/W2144794286","https://openalex.org/W2150621701","https://openalex.org/W2601450892","https://openalex.org/W2956371155","https://openalex.org/W2963078159","https://openalex.org/W2963599420","https://openalex.org/W2983850069","https://openalex.org/W2990230185","https://openalex.org/W3002569343","https://openalex.org/W3033502887","https://openalex.org/W3034218934","https://openalex.org/W3041435213","https://openalex.org/W3047258141","https://openalex.org/W3092612036","https://openalex.org/W3106906018","https://openalex.org/W3108187451","https://openalex.org/W3108189450","https://openalex.org/W3159178846","https://openalex.org/W3159243351","https://openalex.org/W3171888599","https://openalex.org/W3205626500","https://openalex.org/W3207692426","https://openalex.org/W3212231438","https://openalex.org/W3214418393","https://openalex.org/W4214573368","https://openalex.org/W4224860128","https://openalex.org/W4226524654","https://openalex.org/W4244364296","https://openalex.org/W4312447529","https://openalex.org/W4312897837","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W44395729","https://openalex.org/W4283377908","https://openalex.org/W4249847449","https://openalex.org/W2997567050","https://openalex.org/W2765338038","https://openalex.org/W2091777911","https://openalex.org/W2055243143","https://openalex.org/W2003050223","https://openalex.org/W1496225612","https://openalex.org/W1483272040"],"abstract_inverted_index":{"In":[0],"this":[1,52],"paper,":[2],"we":[3,54,75,129,153],"investigate":[4],"online":[5,27,166],"few-shot":[6],"segmentation,":[7],"which":[8,61,82,113],"learns":[9,62],"to":[10,48,63,67,90,95,100,115,135,144,161],"make":[11],"mask":[12],"prediction":[13],"for":[14,140],"novel":[15],"classes":[16],"while":[17],"observing":[18],"samples":[19,42],"sequentially.":[20,73],"The":[21,98],"main":[22],"challenge":[23],"in":[24,33,37,147],"such":[25],"an":[26],"scenario":[28],"is":[29,104],"the":[30,34,65,92,122,125,148,156,165],"sample":[31,70,103,123,146,163,167],"diversity":[32],"sequence,":[35,168],"resulting":[36],"models":[38],"learned":[39],"from":[40,86,164],"previous":[41,87],"that":[43,71,155],"do":[44],"not":[45],"generalize":[46],"well":[47],"future":[49,96],"samples.":[50,97],"To":[51],"end,":[53],"propose":[55,130],"a":[56,78,108,131],"memory-augmented":[57],"variational":[58,109],"adaptation":[59,94,99,143],"network,":[60],"adapt":[64],"model":[66,93,118,142],"each":[68,101,145,162],"new":[69,102],"arrives":[72],"Specifically,":[74],"first":[76],"introduce":[77],"contextual":[79,88],"prototypical":[80,126],"memory,":[81],"retains":[83],"category":[84],"knowledge":[85],"information":[89],"facilitate":[91],"then":[105],"formulated":[106],"as":[107],"Bayesian":[110],"inference":[111],"problem,":[112],"strives":[114],"generate":[116],"sample-specific":[117,137],"parameters":[119],"by":[120],"conditioning":[121],"and":[124,177],"memory.":[127],"Furthermore,":[128],"feature":[132,138],"customization":[133],"module":[134],"learn":[136],"representation":[139],"better":[141],"sequence.":[149],"With":[150],"extensive":[151],"experiments,":[152],"show":[154],"proposed":[157],"method":[158],"effectively":[159],"adapts":[160],"thus":[169],"achieving":[170],"state-of-the-art":[171],"performance":[172],"on":[173],"both":[174],"natural":[175],"image":[176,179],"medical":[178],"datasets.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390190155","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-02T13:21:35.072054","created_date":"2023-12-26"}