{"id":"https://openalex.org/W2998218113","doi":"https://doi.org/10.1109/iccvw.2019.00363","title":"Low-bit Quantization of Neural Networks for Efficient Inference","display_name":"Low-bit Quantization of Neural Networks for Efficient Inference","publication_year":2019,"publication_date":"2019-10-01","ids":{"openalex":"https://openalex.org/W2998218113","doi":"https://doi.org/10.1109/iccvw.2019.00363","mag":"2998218113"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2019.00363","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1902.06822","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040900745","display_name":"Yoni Choukroun","orcid":"https://orcid.org/0000-0002-6438-4942"},"institutions":[{"id":"https://openalex.org/I4210160618","display_name":"Huawei Technologies (United Kingdom)","ror":"https://ror.org/056gzgs71","country_code":"GB","type":"company","lineage":["https://openalex.org/I2250955327","https://openalex.org/I4210160618"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yoni Choukroun","raw_affiliation_strings":["Huawei Technologies Co."],"affiliations":[{"raw_affiliation_string":"Huawei Technologies Co.","institution_ids":["https://openalex.org/I4210160618"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021660878","display_name":"Eli Kravchik","orcid":null},"institutions":[{"id":"https://openalex.org/I4210160618","display_name":"Huawei Technologies (United Kingdom)","ror":"https://ror.org/056gzgs71","country_code":"GB","type":"company","lineage":["https://openalex.org/I2250955327","https://openalex.org/I4210160618"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Eli Kravchik","raw_affiliation_strings":["Huawei Technologies Co."],"affiliations":[{"raw_affiliation_string":"Huawei Technologies Co.","institution_ids":["https://openalex.org/I4210160618"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045464812","display_name":"Fan Yang","orcid":"https://orcid.org/0000-0003-2164-8175"},"institutions":[{"id":"https://openalex.org/I4210160618","display_name":"Huawei Technologies (United Kingdom)","ror":"https://ror.org/056gzgs71","country_code":"GB","type":"company","lineage":["https://openalex.org/I2250955327","https://openalex.org/I4210160618"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Fan Yang","raw_affiliation_strings":["Huawei Technologies Co."],"affiliations":[{"raw_affiliation_string":"Huawei Technologies Co.","institution_ids":["https://openalex.org/I4210160618"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028565537","display_name":"Pavel Kisilev","orcid":null},"institutions":[{"id":"https://openalex.org/I4210160618","display_name":"Huawei Technologies (United Kingdom)","ror":"https://ror.org/056gzgs71","country_code":"GB","type":"company","lineage":["https://openalex.org/I2250955327","https://openalex.org/I4210160618"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Pavel Kisilev","raw_affiliation_strings":["Huawei Technologies Co."],"affiliations":[{"raw_affiliation_string":"Huawei Technologies Co.","institution_ids":["https://openalex.org/I4210160618"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":10.27,"has_fulltext":false,"cited_by_count":275,"citation_normalized_percentile":{"value":0.999876,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.87900174},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77250504},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.5789832},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5704839},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.56721056},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.5187},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.4654748},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4357409},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37274355},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35047978}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2019.00363","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.06822","pdf_url":"https://arxiv.org/pdf/1902.06822","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.06822","pdf_url":"https://arxiv.org/pdf/1902.06822","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1724438581","https://openalex.org/W1821462560","https://openalex.org/W1902934009","https://openalex.org/W2013305145","https://openalex.org/W2119144962","https://openalex.org/W2130942839","https://openalex.org/W2156387975","https://openalex.org/W2160815625","https://openalex.org/W2161758346","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2242818861","https://openalex.org/W2279098554","https://openalex.org/W2286365479","https://openalex.org/W2300242332","https://openalex.org/W2319920447","https://openalex.org/W2405920868","https://openalex.org/W2469490737","https://openalex.org/W2606722458","https://openalex.org/W2618530766","https://openalex.org/W2751477244","https://openalex.org/W2753301142","https://openalex.org/W2769644379","https://openalex.org/W2896718327","https://openalex.org/W2950248853","https://openalex.org/W2962706989","https://openalex.org/W2963122961","https://openalex.org/W2963446712","https://openalex.org/W2963681088","https://openalex.org/W2964133305","https://openalex.org/W2964203871","https://openalex.org/W3106250896","https://openalex.org/W4294344649","https://openalex.org/W4297775537"],"related_works":["https://openalex.org/W4390846322","https://openalex.org/W4298287631","https://openalex.org/W3214410901","https://openalex.org/W3204400881","https://openalex.org/W3204296682","https://openalex.org/W3183118997","https://openalex.org/W3032952384","https://openalex.org/W3008584592","https://openalex.org/W2953061907","https://openalex.org/W2917767146"],"abstract_inverted_index":{"Recent":[0],"machine":[1],"learning":[2],"methods":[3],"use":[4],"increasingly":[5],"large":[6],"deep":[7],"neural":[8,62],"networks":[9],"to":[10,51,56,86],"achieve":[11],"state":[12,170],"of":[13,28,75,81,131,151,171,178],"the":[14,26,82,96,118,126,129,166,172],"art":[15,173],"results":[16,174],"in":[17,22,32,73],"various":[18,161],"tasks.":[19],"The":[20,140],"gains":[21],"performance":[23],"come":[24],"at":[25],"cost":[27],"a":[29,45,70,101],"substantial":[30],"increase":[31],"computation":[33],"and":[34,77,111,128],"storage":[35],"requirements.":[36],"This":[37],"makes":[38],"real-time":[39],"implementations":[40],"on":[41,154,160],"limited":[42,155],"resources":[43],"hardware":[44,137,156],"challenging":[46],"task.":[47],"One":[48],"popular":[49],"approach":[50,142],"address":[52],"this":[53,92],"challenge":[54],"is":[55],"perform":[57],"low-bit":[58,114],"precision":[59,89,115],"computations":[60],"via":[61],"network":[63,122,162],"quantization.":[64,90,139],"However,":[65],"aggressive":[66],"quantization":[67,98,148],"generally":[68],"entails":[69],"severe":[71],"penalty":[72],"terms":[74],"accuracy,":[76],"often":[78],"requires":[79],"retraining":[80],"network,":[83],"or":[84],"resorting":[85],"higher":[87],"bit":[88],"In":[91],"paper,":[93],"we":[94],"formalize":[95],"linear":[97],"task":[99],"as":[100],"Minimum":[102],"Mean":[103],"Squared":[104],"Error":[105],"(MMSE)":[106],"problem":[107],"for":[108,120,135,149],"both":[109],"weights":[110],"activations,":[112],"allowing":[113],"inference":[116],"without":[117],"need":[119],"full":[121],"retraining.":[123],"We":[124],"propose":[125],"analysis":[127],"optimization":[130],"constrained":[132],"MSE":[133],"problems":[134],"performant":[136],"aware":[138],"proposed":[141],"allows":[143],"4":[144],"bits":[145],"integer":[146],"(INT4)":[147],"deployment":[150],"pretrained":[152],"models":[153],"resources.":[157],"Multiple":[158],"experiments":[159],"architectures":[163],"show":[164],"that":[165],"suggested":[167],"method":[168],"yields":[169],"with":[175],"minimal":[176],"loss":[177],"tasks":[179],"accuracy.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2998218113","counts_by_year":[{"year":2024,"cited_by_count":35},{"year":2023,"cited_by_count":63},{"year":2022,"cited_by_count":53},{"year":2021,"cited_by_count":59},{"year":2020,"cited_by_count":40},{"year":2019,"cited_by_count":8},{"year":2018,"cited_by_count":2}],"updated_date":"2024-12-20T00:56:33.844584","created_date":"2020-01-10"}