{"id":"https://openalex.org/W2963253045","doi":"https://doi.org/10.1109/iccvw.2017.190","title":"Dense Face Alignment","display_name":"Dense Face Alignment","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2963253045","doi":"https://doi.org/10.1109/iccvw.2017.190","mag":"2963253045"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2017.190","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102885920","display_name":"Yaojie Liu","orcid":"https://orcid.org/0000-0003-3756-7820"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yaojie Liu","raw_affiliation_strings":["Michigan State University, East Lansing, MI, US"],"affiliations":[{"raw_affiliation_string":"Michigan State University, East Lansing, MI, US","institution_ids":["https://openalex.org/I87216513"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5063037457","display_name":"Amin Jourabloo","orcid":null},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Amin Jourabloo","raw_affiliation_strings":["Michigan State University, East Lansing, MI, US"],"affiliations":[{"raw_affiliation_string":"Michigan State University, East Lansing, MI, US","institution_ids":["https://openalex.org/I87216513"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082890280","display_name":"William Ren","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"William Ren","raw_affiliation_strings":["Monta Vista High School, Cupertino, CA, US"],"affiliations":[{"raw_affiliation_string":"Monta Vista High School, Cupertino, CA, US","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100409053","display_name":"Xiaoming Liu","orcid":"https://orcid.org/0000-0003-3467-5607"},"institutions":[{"id":"https://openalex.org/I87216513","display_name":"Michigan State University","ror":"https://ror.org/05hs6h993","country_code":"US","type":"education","lineage":["https://openalex.org/I87216513"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaoming Liu","raw_affiliation_strings":["Michigan State University, East Lansing, MI, US"],"affiliations":[{"raw_affiliation_string":"Michigan State University, East Lansing, MI, US","institution_ids":["https://openalex.org/I87216513"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.694,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":129,"citation_normalized_percentile":{"value":0.888982,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10828","display_name":"Biometric Recognition and Security Systems","score":0.991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/landmark","display_name":"Landmark","score":0.9523237},{"id":"https://openalex.org/keywords/facial-landmark-detection","display_name":"Facial Landmark Detection","score":0.681386},{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.61277544},{"id":"https://openalex.org/keywords/3d-face-reconstruction","display_name":"3D Face Reconstruction","score":0.60368},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.582594},{"id":"https://openalex.org/keywords/face-recognition","display_name":"Face Recognition","score":0.56006},{"id":"https://openalex.org/keywords/pose-estimation","display_name":"Pose Estimation","score":0.559432},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.51341}],"concepts":[{"id":"https://openalex.org/C2780297707","wikidata":"https://www.wikidata.org/wiki/Q4895393","display_name":"Landmark","level":2,"score":0.9523237},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84009236},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77475935},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.71776474},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.690534},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.619244},{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.61277544},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.51341},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5093359},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46144548},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.41238457},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.3526001},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.072164446},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccvw.2017.190","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.81}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W121703645","https://openalex.org/W1549638","https://openalex.org/W1565195577","https://openalex.org/W1682276745","https://openalex.org/W1795776638","https://openalex.org/W1901075642","https://openalex.org/W1935685005","https://openalex.org/W1940113235","https://openalex.org/W1949778830","https://openalex.org/W1960706641","https://openalex.org/W1963599662","https://openalex.org/W1963882359","https://openalex.org/W1998294030","https://openalex.org/W2017107803","https://openalex.org/W2047508432","https://openalex.org/W2058961190","https://openalex.org/W2102512156","https://openalex.org/W2107037917","https://openalex.org/W2111372597","https://openalex.org/W2127452375","https://openalex.org/W2129210471","https://openalex.org/W2130563197","https://openalex.org/W2155211928","https://openalex.org/W2157285372","https://openalex.org/W2218295615","https://openalex.org/W2237250383","https://openalex.org/W2431345793","https://openalex.org/W2462523589","https://openalex.org/W2465108587","https://openalex.org/W2467255717","https://openalex.org/W2474608001","https://openalex.org/W2496066288","https://openalex.org/W2519753233","https://openalex.org/W2520331172","https://openalex.org/W2546584497","https://openalex.org/W2547612310","https://openalex.org/W2559821077","https://openalex.org/W2564667781","https://openalex.org/W2584229793","https://openalex.org/W2606794139","https://openalex.org/W2963483939","https://openalex.org/W2964014798","https://openalex.org/W845365781"],"related_works":["https://openalex.org/W4243161226","https://openalex.org/W2950647290","https://openalex.org/W2620829895","https://openalex.org/W2378111931","https://openalex.org/W2356918560","https://openalex.org/W2057559274","https://openalex.org/W2056853153","https://openalex.org/W2052388267","https://openalex.org/W2049930962","https://openalex.org/W2005087563"],"abstract_inverted_index":{"Face":[0],"alignment":[1,17,45],"is":[2],"a":[3,19,41,55],"classic":[4],"problem":[5],"in":[6],"the":[7,34,59,83,120],"computer":[8],"vision":[9],"field.":[10],"Previous":[11],"works":[12],"mostly":[13],"focus":[14],"on":[15,96,126],"sparse":[16],"with":[18,88],"limited":[20,67],"number":[21],"of":[22,85],"facial":[23,27,68,122],"landmark":[24,28,94,123],"points,":[25],"i.e.,":[26],"detection.":[29],"In":[30],"this":[31],"paper,":[32],"for":[33,46],"first":[35],"time,":[36],"we":[37,53,80],"aim":[38],"at":[39,133,141],"providing":[40],"very":[42],"dense":[43,113],"3D":[44,60,114],"large-pose":[47],"face":[48,61,73,115],"images.":[49],"To":[50],"achieve":[51],"this,":[52],"train":[54],"CNN":[56,87],"to":[57,92],"estimate":[58],"shape,":[62],"which":[63],"not":[64,109],"only":[65,110],"aligns":[66],"landmarks":[69],"but":[70,117],"also":[71,81,118],"fits":[72],"contours":[74],"and":[75,138],"SIFT":[76],"feature":[77],"points.":[78],"Moreover,":[79],"address":[82],"bottleneck":[84],"training":[86],"multiple":[89],"datasets,":[90,98],"due":[91],"different":[93,97],"markups":[95],"such":[99],"as":[100],"5,":[101],"34,":[102],"68.":[103],"Experimental":[104],"results":[105],"show":[106],"our":[107],"method":[108],"provides":[111],"high-quality,":[112],"fitting":[116],"outperforms":[119],"state-of-the-art":[121],"detection":[124],"methods":[125],"challenging":[127],"datasets.":[128],"Our":[129],"model":[130],"can":[131],"run":[132],"real":[134],"time":[135],"during":[136],"testing":[137],"it's":[139],"available":[140],"http:///cvlab.cse.msu.edu/project-pifa.html.":[142]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963253045","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":15},{"year":2022,"cited_by_count":18},{"year":2021,"cited_by_count":26},{"year":2020,"cited_by_count":25},{"year":2019,"cited_by_count":25},{"year":2018,"cited_by_count":12}],"updated_date":"2024-11-20T19:01:53.935179","created_date":"2019-07-30"}