{"id":"https://openalex.org/W1927968799","doi":"https://doi.org/10.1109/iccve.2014.7297698","title":"Automatic traffic sign recognition based on saliency-enhanced features and SVMs from incrementally built dataset","display_name":"Automatic traffic sign recognition based on saliency-enhanced features and SVMs from incrementally built dataset","publication_year":2014,"publication_date":"2014-11-01","ids":{"openalex":"https://openalex.org/W1927968799","doi":"https://doi.org/10.1109/iccve.2014.7297698","mag":"1927968799"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccve.2014.7297698","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042631401","display_name":"Keren Fu","orcid":"https://orcid.org/0000-0002-3195-2077"},"institutions":[{"id":"https://openalex.org/I66862912","display_name":"Chalmers University of Technology","ror":"https://ror.org/040wg7k59","country_code":"SE","type":"education","lineage":["https://openalex.org/I66862912"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Keren Fu","raw_affiliation_strings":["Department of Signals and Systems , Chalmers University of Technology, Gothenburg, 41296, Sweden"],"affiliations":[{"raw_affiliation_string":"Department of Signals and Systems , Chalmers University of Technology, Gothenburg, 41296, Sweden","institution_ids":["https://openalex.org/I66862912"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044267089","display_name":"Irene Yu\u2010Hua Gu","orcid":"https://orcid.org/0000-0003-4759-7038"},"institutions":[{"id":"https://openalex.org/I66862912","display_name":"Chalmers University of Technology","ror":"https://ror.org/040wg7k59","country_code":"SE","type":"education","lineage":["https://openalex.org/I66862912"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Irene Y. H. Gu","raw_affiliation_strings":["Department of Signals and Systems , Chalmers University of Technology, Gothenburg, 41296, Sweden"],"affiliations":[{"raw_affiliation_string":"Department of Signals and Systems , Chalmers University of Technology, Gothenburg, 41296, Sweden","institution_ids":["https://openalex.org/I66862912"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014029632","display_name":"Anders \u00d6dblom","orcid":null},"institutions":[{"id":"https://openalex.org/I1340210623","display_name":"Volvo (Sweden)","ror":"https://ror.org/05b6ypc36","country_code":"SE","type":"company","lineage":["https://openalex.org/I1340210623"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Anders Odblom","raw_affiliation_strings":["Active Safety CAE, Volvo Cars Corporation Dept. Volvo Cars AB, Sweden"],"affiliations":[{"raw_affiliation_string":"Active Safety CAE, Volvo Cars Corporation Dept. Volvo Cars AB, Sweden","institution_ids":["https://openalex.org/I1340210623"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.284,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.475734,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Visual Object Tracking and Person Re-identification","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Computational Modeling of Visual Saliency Detection","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9927,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/traffic-sign-recognition","display_name":"Traffic sign recognition","score":0.70052004},{"id":"https://openalex.org/keywords/saliency-detection","display_name":"Saliency Detection","score":0.644205},{"id":"https://openalex.org/keywords/salient-object-detection","display_name":"Salient Object Detection","score":0.608422},{"id":"https://openalex.org/keywords/bounding-overwatch","display_name":"Bounding overwatch","score":0.5543828},{"id":"https://openalex.org/keywords/motion-detection","display_name":"Motion Detection","score":0.533499},{"id":"https://openalex.org/keywords/object-detection","display_name":"Object Detection","score":0.525464},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.514624},{"id":"https://openalex.org/keywords/minimum-bounding-box","display_name":"Minimum bounding box","score":0.42136186},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.41511348}],"concepts":[{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.7847646},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.72738147},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7172966},{"id":"https://openalex.org/C6528762","wikidata":"https://www.wikidata.org/wiki/Q1574298","display_name":"Traffic sign recognition","level":4,"score":0.70052004},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.69521797},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.67403054},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.647662},{"id":"https://openalex.org/C2983860417","wikidata":"https://www.wikidata.org/wiki/Q170285","display_name":"Traffic sign","level":3,"score":0.61610156},{"id":"https://openalex.org/C139676723","wikidata":"https://www.wikidata.org/wiki/Q1193832","display_name":"Sign (mathematics)","level":2,"score":0.60810643},{"id":"https://openalex.org/C63584917","wikidata":"https://www.wikidata.org/wiki/Q333286","display_name":"Bounding overwatch","level":2,"score":0.5543828},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4514061},{"id":"https://openalex.org/C147037132","wikidata":"https://www.wikidata.org/wiki/Q6865426","display_name":"Minimum bounding box","level":3,"score":0.42136186},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.41511348},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37566376},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17592332},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12749776},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccve.2014.7297698","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.61,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1574496672","https://openalex.org/W1977610018","https://openalex.org/W1982484677","https://openalex.org/W2002427601","https://openalex.org/W2038404899","https://openalex.org/W2039313011","https://openalex.org/W2067713319","https://openalex.org/W2098350497","https://openalex.org/W21025885","https://openalex.org/W2109722393","https://openalex.org/W2110591696","https://openalex.org/W2112316183","https://openalex.org/W2113650053","https://openalex.org/W2118246710","https://openalex.org/W2125556102","https://openalex.org/W2126628495","https://openalex.org/W2128272608","https://openalex.org/W2131791003","https://openalex.org/W2139137304","https://openalex.org/W2139823104","https://openalex.org/W2150581781","https://openalex.org/W2150843659","https://openalex.org/W2151989394","https://openalex.org/W2152417180","https://openalex.org/W2158516577","https://openalex.org/W2159386181","https://openalex.org/W2161969291","https://openalex.org/W2168356304","https://openalex.org/W2169810643","https://openalex.org/W2172000360","https://openalex.org/W3097096317"],"related_works":["https://openalex.org/W4382897155","https://openalex.org/W4379231512","https://openalex.org/W4287027631","https://openalex.org/W4283820116","https://openalex.org/W4237171675","https://openalex.org/W3209723314","https://openalex.org/W3192357901","https://openalex.org/W3036286480","https://openalex.org/W2952736415","https://openalex.org/W2387360586"],"abstract_inverted_index":{"This":[0],"paper":[1],"proposes":[2],"an":[3,87],"automatic":[4],"traffic":[5,20,143],"sign":[6,33,79,122,144],"recognition":[7],"method":[8,138],"based":[9],"on":[10,91,141],"saliency-enhanced":[11],"feature":[12,53],"and":[13,39,41,126],"SVMs.":[14],"As":[15,116],"when":[16],"human":[17],"observe":[18],"a":[19,22,102,121],"sign,":[21],"two-stage":[23],"procedure":[24],"is":[25,84,98,123,139,147],"performed":[26],"by":[27,78,100,131],"first":[28,65,114],"locating":[29],"the":[30,48,64,107,110,113],"region":[31,82],"of":[32,71,109,112],"according":[34],"to":[35,45,56],"its":[36],"unique":[37],"shape":[38],"color,":[40],"second":[42,96],"paying":[43],"attention":[44],"content":[46],"inside":[47,120],"sign.":[49],"The":[50,95,136],"proposed":[51,137],"saliency":[52],"extraction":[54,83],"attempts":[55],"resemble":[57],"these":[58],"two":[59],"processing":[60],"stages.":[61],"We":[62],"model":[63],"stage":[66,97],"via":[67],"extracting":[68],"salient":[69,118],"regions":[70],"signs":[72],"from":[73],"detected":[74],"bounding":[75],"boxes":[76],"contributed":[77],"detector.":[80],"Salient":[81],"formed":[85],"as":[86],"energy":[88],"propagation":[89],"process":[90],"local":[92],"structured":[93],"graph.":[94],"modeled":[99],"exploiting":[101],"non-linear":[103],"color":[104],"mapping":[105],"under":[106],"guidance":[108],"output":[111],"stage.":[115],"results,":[117],"signature":[119],"popped":[124],"up":[125],"can":[127],"be":[128],"directly":[129],"used":[130],"subsequent":[132],"SVMs":[133],"for":[134],"classification.":[135],"validated":[140],"Chinese":[142],"dataset":[145],"that":[146],"incrementally":[148],"built.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1927968799","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2016,"cited_by_count":2}],"updated_date":"2024-11-27T22:11:05.244746","created_date":"2016-06-24"}