{"id":"https://openalex.org/W1903238710","doi":"https://doi.org/10.1109/iccve.2014.7297504","title":"A novel forecasting algorithm for electric vehicle charging stations","display_name":"A novel forecasting algorithm for electric vehicle charging stations","publication_year":2014,"publication_date":"2014-11-01","ids":{"openalex":"https://openalex.org/W1903238710","doi":"https://doi.org/10.1109/iccve.2014.7297504","mag":"1903238710"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccve.2014.7297504","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069929809","display_name":"Mostafa Majidpour","orcid":"https://orcid.org/0000-0003-0726-4503"},"institutions":[{"id":"https://openalex.org/I4210093255","display_name":"Smart Electric Grid (United States)","ror":"https://ror.org/00krh1q73","country_code":"US","type":"company","lineage":["https://openalex.org/I4210093255"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mostafa Majidpour","raw_affiliation_strings":["Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA"],"affiliations":[{"raw_affiliation_string":"Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA","institution_ids":["https://openalex.org/I4210093255"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051027567","display_name":"Charlie Qiu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210093255","display_name":"Smart Electric Grid (United States)","ror":"https://ror.org/00krh1q73","country_code":"US","type":"company","lineage":["https://openalex.org/I4210093255"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Charlie Qiu","raw_affiliation_strings":["Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA"],"affiliations":[{"raw_affiliation_string":"Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA","institution_ids":["https://openalex.org/I4210093255"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103504467","display_name":"Peter Chu","orcid":null},"institutions":[{"id":"https://openalex.org/I4210093255","display_name":"Smart Electric Grid (United States)","ror":"https://ror.org/00krh1q73","country_code":"US","type":"company","lineage":["https://openalex.org/I4210093255"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peter Chu","raw_affiliation_strings":["Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA"],"affiliations":[{"raw_affiliation_string":"Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA","institution_ids":["https://openalex.org/I4210093255"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014375778","display_name":"Rajit Gadh","orcid":"https://orcid.org/0000-0002-0946-208X"},"institutions":[{"id":"https://openalex.org/I4210093255","display_name":"Smart Electric Grid (United States)","ror":"https://ror.org/00krh1q73","country_code":"US","type":"company","lineage":["https://openalex.org/I4210093255"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rajit Gadh","raw_affiliation_strings":["Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA"],"affiliations":[{"raw_affiliation_string":"Smart Grid Energy Research Center, UCLA, Los Angeles, California, USA","institution_ids":["https://openalex.org/I4210093255"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005915031","display_name":"H. R. Pota","orcid":"https://orcid.org/0000-0002-9612-714X"},"institutions":[{"id":"https://openalex.org/I188329596","display_name":"University of Canberra","ror":"https://ror.org/04s1nv328","country_code":"AU","type":"education","lineage":["https://openalex.org/I188329596"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Hemanshu R. Pota","raw_affiliation_strings":["School of Engineering & Information Technology, The University of NSW, Canberra ACT 2610 Australia"],"affiliations":[{"raw_affiliation_string":"School of Engineering & Information Technology, The University of NSW, Canberra ACT 2610 Australia","institution_ids":["https://openalex.org/I188329596"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.663,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":24,"citation_normalized_percentile":{"value":0.949983,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10768","display_name":"Integration of Electric Vehicles in Power Systems","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10768","display_name":"Integration of Electric Vehicles in Power Systems","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10663","display_name":"Lithium-ion Battery Management in Electric Vehicles","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Electricity Price and Load Forecasting Methods","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/load-forecasting","display_name":"Load Forecasting","score":0.657083},{"id":"https://openalex.org/keywords/electricity-price-forecasting","display_name":"Electricity Price Forecasting","score":0.612524},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.585858},{"id":"https://openalex.org/keywords/probabilistic-forecasting","display_name":"Probabilistic Forecasting","score":0.578271},{"id":"https://openalex.org/keywords/charging-infrastructure","display_name":"Charging Infrastructure","score":0.53212}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67084795},{"id":"https://openalex.org/C113238511","wikidata":"https://www.wikidata.org/wiki/Q1071612","display_name":"k-nearest neighbors algorithm","level":2,"score":0.6334364},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.62914157},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.6137404},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5997711},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.55978036},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.46919462},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.42670298},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.41606337},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.41264665},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35418},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.31753394},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30469954},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12984148},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09607437},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.09079239},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccve.2014.7297504","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.9}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1814086970","https://openalex.org/W1963651797","https://openalex.org/W1964357740","https://openalex.org/W1969358185","https://openalex.org/W1977564293","https://openalex.org/W1981780459","https://openalex.org/W2004354266","https://openalex.org/W2049171488","https://openalex.org/W2049478115","https://openalex.org/W2071173074","https://openalex.org/W2090373435","https://openalex.org/W2095576788","https://openalex.org/W2101109967","https://openalex.org/W2116174583","https://openalex.org/W2129018774","https://openalex.org/W2150548640","https://openalex.org/W2150568836","https://openalex.org/W2537150355","https://openalex.org/W2911964244","https://openalex.org/W4205646471","https://openalex.org/W4238530616"],"related_works":["https://openalex.org/W4386259002","https://openalex.org/W4224941037","https://openalex.org/W4200112873","https://openalex.org/W3193043704","https://openalex.org/W3171520305","https://openalex.org/W3135818052","https://openalex.org/W2955796858","https://openalex.org/W2004826645","https://openalex.org/W1924178503","https://openalex.org/W1546989560"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3],"recently":[4],"proposed":[5],"time":[6,78],"series":[7],"forecasting":[8],"algorithm,":[9],"Modified":[10],"Pattern-based":[11],"Sequence":[12],"Forecasting":[13],"(MPSF),":[14],"is":[15],"compared":[16],"with":[17,89,104,114,156],"three":[18],"other":[19,61],"algorithms.":[20],"These":[21],"algorithms":[22],"have":[23],"been":[24],"applied":[25],"to":[26,79,93,106],"predict":[27],"energy":[28],"consumption":[29],"at":[30],"individual":[31],"EV":[32],"charging":[33],"outlets":[34],"using":[35],"real":[36],"world":[37],"data":[38],"from":[39],"the":[40,81,95,101,124,132],"UCLA":[41],"campus.":[42],"Two":[43],"of":[44,84],"these":[45,85],"algorithms,":[46,87],"namely":[47],"MPSF":[48,97,151],"and":[49,56,67,74,98,110,136,148,163],"k-Nearest":[50],"Neighbor":[51],"(kNN),":[52],"are":[53,71],"relatively":[54],"fast":[55],"structurally":[57],"less":[58,158],"complex.":[59],"The":[60],"two,":[62],"Support":[63],"Vector":[64],"Regression":[65],"(SVR)":[66],"Random":[68],"Forest":[69],"(RF),":[70],"more":[72,77],"complex":[73],"hence":[75],"require":[76],"generate":[80],"forecast.":[82],"Out":[83],"four":[86],"kNN":[88],"k=1":[90],"turns":[91],"out":[92],"be":[94],"fastest,":[96],"SVR":[99,162],"were":[100],"most":[102],"accurate":[103,154],"respect":[105],"different":[107,145],"error":[108,146],"measures,":[109],"RF":[111,164],"provides":[112],"us":[113],"an":[115,128],"importance":[116],"computing":[117],"scheme":[118],"for":[119,127,165],"our":[120,166],"input":[121],"variables.":[122],"Selecting":[123],"appropriate":[125],"algorithm":[126,149],"application":[129],"depends":[130],"on":[131],"tradeoff":[133],"between":[134],"accuracy":[135],"computational":[137],"time;":[138],"however,":[139],"considering":[140],"all":[141],"factors":[142],"together":[143],"(two":[144],"measures":[147],"speed),":[150],"gives":[152],"reasonably":[153],"predictions":[155],"much":[157],"computations":[159],"than":[160],"NN,":[161],"application.":[167]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1903238710","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2024-11-27T12:47:52.260598","created_date":"2016-06-24"}