{"id":"https://openalex.org/W4390871662","doi":"https://doi.org/10.1109/iccv51070.2023.02002","title":"DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection","display_name":"DQS3D: Densely-matched Quantization-aware Semi-supervised 3D Detection","publication_year":2023,"publication_date":"2023-10-01","ids":{"openalex":"https://openalex.org/W4390871662","doi":"https://doi.org/10.1109/iccv51070.2023.02002"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.02002","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2304.13031","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041236976","display_name":"Huan-ang Gao","orcid":"https://orcid.org/0009-0004-6727-5778"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Huan-ang Gao","raw_affiliation_strings":["Department of Computer Science and Technology, THU","Institute for AI Industry Research (AIR), THU"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, THU","institution_ids":[]},{"raw_affiliation_string":"Institute for AI Industry Research (AIR), THU","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5077011386","display_name":"Beiwen Tian","orcid":"https://orcid.org/0000-0002-2651-913X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Beiwen Tian","raw_affiliation_strings":["Department of Computer Science and Technology, THU","Institute for AI Industry Research (AIR), THU"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, THU","institution_ids":[]},{"raw_affiliation_string":"Institute for AI Industry Research (AIR), THU","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100339791","display_name":"Pengfei Li","orcid":"https://orcid.org/0009-0009-4234-1579"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Pengfei Li","raw_affiliation_strings":["Department of Computer Science and Technology, THU","Institute for AI Industry Research (AIR), THU"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Technology, THU","institution_ids":[]},{"raw_affiliation_string":"Institute for AI Industry Research (AIR), THU","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100418978","display_name":"Hao Zhao","orcid":"https://orcid.org/0000-0001-8135-0616"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Hao Zhao","raw_affiliation_strings":["Institute for AI Industry Research (AIR), THU"],"affiliations":[{"raw_affiliation_string":"Institute for AI Industry Research (AIR), THU","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011913905","display_name":"Guyue Zhou","orcid":"https://orcid.org/0000-0002-3894-9858"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Guyue Zhou","raw_affiliation_strings":["Institute for AI Industry Research (AIR), THU"],"affiliations":[{"raw_affiliation_string":"Institute for AI Industry Research (AIR), THU","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.205,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.436259,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"21848","last_page":"21858"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.41392013}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7586961},{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.68582904},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6833192},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6276236},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.60000867},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5414685},{"id":"https://openalex.org/C73000952","wikidata":"https://www.wikidata.org/wiki/Q17007827","display_name":"Discretization","level":2,"score":0.53512925},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.5109855},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.4695578},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.434242},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.41392013},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3891554},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3769772},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16351613},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.086416095},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv51070.2023.02002","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.13031","pdf_url":"https://arxiv.org/pdf/2304.13031","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2304.13031","pdf_url":"https://arxiv.org/pdf/2304.13031","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":62,"referenced_works":["https://openalex.org/W116751493","https://openalex.org/W1923184257","https://openalex.org/W2594519801","https://openalex.org/W2742847802","https://openalex.org/W2885364117","https://openalex.org/W2908510526","https://openalex.org/W2953070460","https://openalex.org/W2954258401","https://openalex.org/W2963037989","https://openalex.org/W2963125977","https://openalex.org/W2963591013","https://openalex.org/W2981995220","https://openalex.org/W2982770724","https://openalex.org/W2988715931","https://openalex.org/W3012573144","https://openalex.org/W3034357529","https://openalex.org/W3035057392","https://openalex.org/W3035160371","https://openalex.org/W3036337637","https://openalex.org/W3040903310","https://openalex.org/W3096387236","https://openalex.org/W3106250896","https://openalex.org/W3143332912","https://openalex.org/W3147788509","https://openalex.org/W3158545781","https://openalex.org/W3158661000","https://openalex.org/W3159040138","https://openalex.org/W3167251133","https://openalex.org/W3168600998","https://openalex.org/W3171581326","https://openalex.org/W3172507542","https://openalex.org/W3176748778","https://openalex.org/W3178218920","https://openalex.org/W3179883066","https://openalex.org/W3197097949","https://openalex.org/W3198923361","https://openalex.org/W3203532272","https://openalex.org/W3215207332","https://openalex.org/W4212774754","https://openalex.org/W4214526701","https://openalex.org/W4226377404","https://openalex.org/W4242710771","https://openalex.org/W4309630083","https://openalex.org/W4312246270","https://openalex.org/W4312248619","https://openalex.org/W4312328737","https://openalex.org/W4312369999","https://openalex.org/W4312479380","https://openalex.org/W4312519428","https://openalex.org/W4312605608","https://openalex.org/W4312651959","https://openalex.org/W4312704232","https://openalex.org/W4312769060","https://openalex.org/W4313030842","https://openalex.org/W4313031313","https://openalex.org/W4313128368","https://openalex.org/W4313137164","https://openalex.org/W4313168566","https://openalex.org/W4319300204","https://openalex.org/W4319300269","https://openalex.org/W4383108216","https://openalex.org/W4390872562"],"related_works":["https://openalex.org/W3027020613","https://openalex.org/W2625833328","https://openalex.org/W2392921965","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2358755282","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W2016533837","https://openalex.org/W1533177136"],"abstract_inverted_index":{"In":[0,93],"this":[1,47,119,144,154],"paper,":[2],"we":[3,95,146],"study":[4],"the":[5,18,30,59,65,83,97,106,123,140],"problem":[6,61],"of":[7,14,35,67,118],"semi-supervised":[8,43,99],"3D":[9,24,100],"object":[10],"detection,":[11],"which":[12,37,130],"is":[13,49,62,122],"great":[15],"importance":[16],"considering":[17],"high":[19],"annotation":[20],"cost":[21],"for":[22,42,51],"cluttered":[23],"indoor":[25],"scenes.":[26],"We":[27],"resort":[28],"to":[29,58,133,167],"robust":[31],"and":[32,86,109,148,173],"principled":[33],"framework":[34],"self-teaching,":[36],"has":[38],"triggered":[39],"notable":[40],"progress":[41],"learning":[44],"recently.":[45],"While":[46],"paradigm":[48],"natural":[50],"image-level":[52],"or":[53],"pixel-level":[54],"prediction,":[55],"adapting":[56],"it":[57],"detection":[60,101],"challenged":[63],"by":[64,127],"issue":[66,117],"proposal":[68],"matching.":[69],"Prior":[70],"methods":[71],"are":[72,159,175],"based":[73],"upon":[74],"two-stage":[75],"pipelines,":[76],"matching":[77],"heuristically":[78],"selected":[79],"proposals":[80],"generated":[81],"in":[82,88,105,139],"first":[84,98],"stage":[85],"resulting":[87],"spatially":[89,111],"sparse":[90],"training":[91,113],"signals.":[92,114],"contrast,":[94],"propose":[96],"algorithm":[102],"that":[103,152],"works":[104],"single-stage":[107],"manner":[108],"allows":[110],"dense":[112],"A":[115],"fundamental":[116],"new":[120],"design":[121],"quantization":[124],"error":[125],"caused":[126],"point-to-voxel":[128],"discretization,":[129],"inevitably":[131],"leads":[132],"misalignment":[134,155],"between":[135],"two":[136],"transformed":[137],"views":[138],"voxel":[141],"domain.":[142],"To":[143],"end,":[145],"derive":[147],"implement":[149],"closed-form":[150],"rules":[151],"compensate":[153],"on-the-fly.":[156],"Our":[157],"results":[158],"significant,":[160],"e.g.,":[161],"promoting":[162],"Scan-Net":[163],"mAP@0.5":[164],"from":[165],"35.2%":[166],"48.5%":[168],"using":[169],"20%":[170],"annotation.":[171],"Codes":[172],"data":[174],"publicly":[176],"available":[177],"1":[180],".":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4390871662","counts_by_year":[{"year":2024,"cited_by_count":9}],"updated_date":"2025-02-18T00:34:16.379992","created_date":"2024-01-16"}