{"id":"https://openalex.org/W2990759908","doi":"https://doi.org/10.1109/iccv.2019.00540","title":"Probabilistic Deep Ordinal Regression Based on Gaussian Processes","display_name":"Probabilistic Deep Ordinal Regression Based on Gaussian Processes","publication_year":2019,"publication_date":"2019-10-01","ids":{"openalex":"https://openalex.org/W2990759908","doi":"https://doi.org/10.1109/iccv.2019.00540","mag":"2990759908"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv.2019.00540","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012901717","display_name":"Yanzhu Liu","orcid":null},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Yanzhu Liu","raw_affiliation_strings":["Nanyang Technological University, 50 Nanyang Avenue, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, 50 Nanyang Avenue, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054089279","display_name":"Fan Wang","orcid":"https://orcid.org/0000-0002-7106-6061"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Fan Wang","raw_affiliation_strings":["Nanyang Technological University, 50 Nanyang Avenue, Singapore"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University, 50 Nanyang Avenue, Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069165212","display_name":"Wai-Kin Adams Kong","orcid":null},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Wai-Kin Adams Kong","raw_affiliation_strings":["Nanyang Technological University"],"affiliations":[{"raw_affiliation_string":"Nanyang Technological University","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.823,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.836753,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"5300","last_page":"5308"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9875,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9687,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C110313322","wikidata":"https://www.wikidata.org/wiki/Q7100793","display_name":"Ordinal regression","level":2,"score":0.82567143},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6237606},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56945264},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5374857},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.5373285},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.48646638},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.4750017},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.47273934},{"id":"https://openalex.org/C81692654","wikidata":"https://www.wikidata.org/wiki/Q225926","display_name":"Kriging","level":2,"score":0.46305537},{"id":"https://openalex.org/C85461838","wikidata":"https://www.wikidata.org/wiki/Q7100785","display_name":"Ordinal data","level":2,"score":0.44064295},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.4237945},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3324272},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24994376},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv.2019.00540","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W114375244","https://openalex.org/W137285897","https://openalex.org/W1532457925","https://openalex.org/W1533660737","https://openalex.org/W1571870753","https://openalex.org/W1686810756","https://openalex.org/W1866206747","https://openalex.org/W1905153633","https://openalex.org/W2099768828","https://openalex.org/W2124648328","https://openalex.org/W2142575165","https://openalex.org/W2162724919","https://openalex.org/W2257113116","https://openalex.org/W2291175721","https://openalex.org/W2440214111","https://openalex.org/W2540189295","https://openalex.org/W2549019841","https://openalex.org/W2604645045","https://openalex.org/W2735471653","https://openalex.org/W2742048379","https://openalex.org/W2798655965","https://openalex.org/W2953263857","https://openalex.org/W2963016882","https://openalex.org/W2963165596","https://openalex.org/W2963711523","https://openalex.org/W3011144947","https://openalex.org/W4293579865","https://openalex.org/W4297791702","https://openalex.org/W4301091646","https://openalex.org/W759726671","https://openalex.org/W96056672"],"related_works":["https://openalex.org/W4300104397","https://openalex.org/W4237346635","https://openalex.org/W4236496007","https://openalex.org/W2963953154","https://openalex.org/W2914173981","https://openalex.org/W2912776266","https://openalex.org/W2798701209","https://openalex.org/W2568280491","https://openalex.org/W1572610764","https://openalex.org/W1539030525"],"abstract_inverted_index":{"With":[0],"excellent":[1],"representation":[2],"power":[3],"for":[4,15,59,68,106,139,146,187],"complex":[5],"data,":[6],"deep":[7,86],"neural":[8,87,108,124],"networks":[9],"(DNNs)":[10],"based":[11],"approaches":[12,182],"are":[13,29,121],"state-of-the-art":[14,179],"ordinal":[16,25,69,78,118,180],"regression":[17,67,70,181],"problem":[18,71],"which":[19,53,96],"aims":[20],"to":[21,32,134],"classify":[22],"instances":[23],"into":[24],"categories.":[26],"However,":[27],"DNNs":[28],"not":[30],"able":[31,133],"capture":[33],"uncertainties":[34],"and":[35,76,111,142,162,183],"produce":[36,135],"probabilistic":[37,41,144],"interpretations.":[38],"As":[39],"a":[40,85,90],"model,":[42],"Gaussian":[43],"Processes":[44],"(GPs)":[45],"on":[46,81,93,151],"the":[47,94,101,117,129,175,185],"other":[48],"hand":[49],"offers":[50],"uncertainty":[51],"information,":[52],"is":[54,97,132],"nonetheless":[55],"lack":[56],"of":[57,171],"scalability":[58],"large":[60],"datasets.":[61],"This":[62],"paper":[63],"adapts":[64],"traditional":[65],"GPs":[66,91,112],"by":[72,100],"using":[73],"both":[74,107],"conjugate":[75],"non-conjugate":[77],"likelihood.":[79],"Based":[80],"that,":[82],"it":[83],"proposes":[84],"network":[88,109,125],"with":[89],"layer":[92],"top,":[95],"trained":[98],"end-to-end":[99],"stochastic":[102],"gradient":[103],"descent":[104],"method":[105],"parameters":[110,115,126],"parameters.":[113],"The":[114],"in":[116,169],"likelihood":[119,137],"function":[120],"learned":[122],"as":[123],"so":[127],"that":[128,168],"proposed":[130,176],"framework":[131],"fitted":[136],"functions":[138],"training":[140],"sets":[141],"make":[143],"predictions":[145],"test":[147],"points.":[148],"Experimental":[149],"results":[150],"three":[152],"real-world":[153],"benchmarks":[154],"-":[155,166],"image":[156,160],"aesthetics":[157],"rating,":[158],"historical":[159],"grading":[161],"age":[163],"group":[164],"estimation":[165],"demonstrate":[167],"terms":[170],"mean":[172],"absolute":[173],"error,":[174],"approach":[177],"outperforms":[178],"provides":[184],"confidence":[186],"predictions.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2990759908","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":4}],"updated_date":"2025-01-03T11:14:36.485846","created_date":"2019-12-05"}