{"id":"https://openalex.org/W2984612350","doi":"https://doi.org/10.1109/iccv.2019.00244","title":"End-to-End Hand Mesh Recovery From a Monocular RGB Image","display_name":"End-to-End Hand Mesh Recovery From a Monocular RGB Image","publication_year":2019,"publication_date":"2019-10-01","ids":{"openalex":"https://openalex.org/W2984612350","doi":"https://doi.org/10.1109/iccv.2019.00244","mag":"2984612350"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv.2019.00244","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1902.09305","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100442122","display_name":"Xiong Zhang","orcid":"https://orcid.org/0000-0002-9214-396X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Xiong Zhang","raw_affiliation_strings":["Y-tech, Kwai"],"affiliations":[{"raw_affiliation_string":"Y-tech, Kwai","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100429992","display_name":"Qiang Li","orcid":"https://orcid.org/0000-0002-6736-3389"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Qiang Li","raw_affiliation_strings":["Y-tech, Kwai"],"affiliations":[{"raw_affiliation_string":"Y-tech, Kwai","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101560465","display_name":"Hong Mo","orcid":"https://orcid.org/0000-0002-3535-7806"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hong Mo","raw_affiliation_strings":["State Key Laboratory of VR, Beihang University"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of VR, Beihang University","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100398472","display_name":"Wenbo Zhang","orcid":"https://orcid.org/0000-0003-4106-4038"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wenbo Zhang","raw_affiliation_strings":["Y-tech, Kwai"],"affiliations":[{"raw_affiliation_string":"Y-tech, Kwai","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035367145","display_name":"Wen Zheng","orcid":"https://orcid.org/0000-0002-6570-6245"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Wen Zheng","raw_affiliation_strings":["Y-tech, Kwai"],"affiliations":[{"raw_affiliation_string":"Y-tech, Kwai","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.128,"has_fulltext":false,"cited_by_count":205,"citation_normalized_percentile":{"value":0.999886,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Hand Gesture Recognition Systems","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.67964566},{"id":"https://openalex.org/keywords/monocular","display_name":"Monocular","score":0.6435807},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.60249585},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.5378214},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.5099391}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73862934},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.73452806},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.7015883},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.67964566},{"id":"https://openalex.org/C65909025","wikidata":"https://www.wikidata.org/wiki/Q1945033","display_name":"Monocular","level":2,"score":0.6435807},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.60249585},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.5378214},{"id":"https://openalex.org/C57493831","wikidata":"https://www.wikidata.org/wiki/Q3134666","display_name":"Projection (relational algebra)","level":2,"score":0.5143095},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.5099391},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.493816},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.46572134},{"id":"https://openalex.org/C18555067","wikidata":"https://www.wikidata.org/wiki/Q8375051","display_name":"Joint (building)","level":2,"score":0.44534767},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17409477},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccv.2019.00244","pdf_url":null,"source":{"id":"https://openalex.org/S4363607764","display_name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.09305","pdf_url":"https://arxiv.org/pdf/1902.09305","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1902.09305","pdf_url":"https://arxiv.org/pdf/1902.09305","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":61,"referenced_works":["https://openalex.org/W1545424562","https://openalex.org/W1923747199","https://openalex.org/W1952857803","https://openalex.org/W1967554269","https://openalex.org/W1986490170","https://openalex.org/W1990947293","https://openalex.org/W2007104354","https://openalex.org/W2017107803","https://openalex.org/W2065228210","https://openalex.org/W2097998348","https://openalex.org/W2107037917","https://openalex.org/W2107655853","https://openalex.org/W2110964220","https://openalex.org/W2130267005","https://openalex.org/W2133385272","https://openalex.org/W2136000821","https://openalex.org/W2143641248","https://openalex.org/W2150457612","https://openalex.org/W2210697964","https://openalex.org/W2237250383","https://openalex.org/W2265959009","https://openalex.org/W2307770531","https://openalex.org/W2469784314","https://openalex.org/W2483862638","https://openalex.org/W2520346623","https://openalex.org/W2546353648","https://openalex.org/W2555751471","https://openalex.org/W2604672468","https://openalex.org/W2605973302","https://openalex.org/W2612706635","https://openalex.org/W2750606766","https://openalex.org/W2756050327","https://openalex.org/W2768683308","https://openalex.org/W2771328060","https://openalex.org/W2774831247","https://openalex.org/W2796453247","https://openalex.org/W2797515701","https://openalex.org/W2798291180","https://openalex.org/W2798581336","https://openalex.org/W2798637590","https://openalex.org/W2798895895","https://openalex.org/W2892644985","https://openalex.org/W2897765997","https://openalex.org/W2949207595","https://openalex.org/W2952819818","https://openalex.org/W2962754033","https://openalex.org/W2962793481","https://openalex.org/W2962811204","https://openalex.org/W2962926199","https://openalex.org/W2963207848","https://openalex.org/W2963234092","https://openalex.org/W2963474899","https://openalex.org/W2963488642","https://openalex.org/W2963508807","https://openalex.org/W2963527086","https://openalex.org/W2963995996","https://openalex.org/W2964093990","https://openalex.org/W2964094607","https://openalex.org/W2964194725","https://openalex.org/W2964304707","https://openalex.org/W2979577579"],"related_works":["https://openalex.org/W3102636071","https://openalex.org/W3004045746","https://openalex.org/W2891001608","https://openalex.org/W2822883015","https://openalex.org/W2295870746","https://openalex.org/W2152866379","https://openalex.org/W2144760288","https://openalex.org/W2099272513","https://openalex.org/W1968716783","https://openalex.org/W1628937209"],"abstract_inverted_index":{"In":[0,30,63],"this":[1,86,120],"paper,":[2],"we":[3,89],"present":[4],"a":[5,22,26,51,72,113,122,183],"HAnd":[6],"Mesh":[7],"Recovery":[8],"(HAMR)":[9],"framework":[10,142,150],"to":[11,32],"tackle":[12],"the":[13,17,65,93,101,104,108,116,132,136,161,171],"problem":[14],"of":[15,21,103,115,131,153,163],"reconstructing":[16],"full":[18],"3D":[19,38,74,81,94,117,156,178],"mesh":[20,56,66,87,158],"human":[23],"hand":[24,39,60,75,157,179],"from":[25,42,182],"single":[27],"RGB":[28,43,185],"image.":[29],"contrast":[31],"existing":[33],"research":[34],"on":[35,187],"2D":[36,109,176],"or":[37],"pose":[40,180],"estimation":[41,181],"or/and":[44],"depth":[45],"image":[46,61,186],"data,":[47],"HAMR":[48],"can":[49,90,126],"provide":[50],"more":[52],"expressive":[53],"and":[54,79,135,177],"useful":[55],"representation":[57,67],"for":[58,174],"monocular":[59,184],"understanding.":[62],"particular,":[64],"is":[68,151],"achieved":[69],"by":[70],"parameterizing":[71],"generic":[73],"model":[76],"with":[77,112],"shape":[78],"relative":[80],"joint":[82,95,110],"angles.":[83],"By":[84],"utilizing":[85],"representation,":[88],"easily":[91],"compute":[92],"locations":[96,111],"via":[97],"linear":[98],"interpolations":[99],"between":[100],"vertexes":[102],"mesh,":[105],"while":[106],"obtain":[107],"projection":[114],"joints.":[118],"To":[119],"end,":[121],"differentiable":[123],"re-projection":[124],"loss":[125],"be":[127],"defined":[128],"in":[129,160],"terms":[130],"derived":[133],"representations":[134],"ground-truth":[137],"labels,":[138],"thus":[139],"making":[140],"our":[141,149,167],"end-to-end":[143],"trainable.":[144],"Qualitative":[145],"experiments":[146],"show":[147],"that":[148],"capable":[152],"recovering":[154],"appealing":[155],"even":[159],"presence":[162],"severe":[164],"occlusions.":[165],"Quantitatively,":[166],"approach":[168],"also":[169],"outperforms":[170],"state-of-the-art":[172],"methods":[173],"both":[175],"several":[188],"benchmark":[189],"datasets.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2984612350","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":32},{"year":2023,"cited_by_count":38},{"year":2022,"cited_by_count":27},{"year":2021,"cited_by_count":60},{"year":2020,"cited_by_count":44},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-26T00:11:48.120140","created_date":"2019-11-22"}