{"id":"https://openalex.org/W2129089781","doi":"https://doi.org/10.1109/iccta.2007.80","title":"Kernel Auto-Regressive Model with eXogenous Inputs for Nonlinear Time Series Prediction","display_name":"Kernel Auto-Regressive Model with eXogenous Inputs for Nonlinear Time Series Prediction","publication_year":2007,"publication_date":"2007-03-01","ids":{"openalex":"https://openalex.org/W2129089781","doi":"https://doi.org/10.1109/iccta.2007.80","mag":"2129089781"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.80","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034269155","display_name":"V P Mini","orcid":null},"institutions":[{"id":"https://openalex.org/I4210101534","display_name":"Honeywell (India)","ror":"https://ror.org/017eb5121","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210101534","https://openalex.org/I82514191"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Venkataramana B. Mini","raw_affiliation_strings":["Honeywell Technology Solutions Lab, Bangalore, INDIA"],"affiliations":[{"raw_affiliation_string":"Honeywell Technology Solutions Lab, Bangalore, INDIA","institution_ids":["https://openalex.org/I4210101534"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113563423","display_name":"C. Chandra Sekhar","orcid":null},"institutions":[{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"C. Chandra Sekhar","raw_affiliation_strings":["IIT MADRAS, India#TAB#"],"affiliations":[{"raw_affiliation_string":"IIT MADRAS, India#TAB#","institution_ids":["https://openalex.org/I24676775"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.319994,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"355","last_page":"360"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10711","display_name":"Target Tracking and Data Fusion in Sensor Networks","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.6388645}],"concepts":[{"id":"https://openalex.org/C42536954","wikidata":"https://www.wikidata.org/wiki/Q7049462","display_name":"Nonlinear autoregressive exogenous model","level":3,"score":0.8063669},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6505379},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.6388645},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5798949},{"id":"https://openalex.org/C159877910","wikidata":"https://www.wikidata.org/wiki/Q2202883","display_name":"Autoregressive model","level":2,"score":0.5574162},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.54053026},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5211132},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.51227945},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.5032076},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.49441552},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4733843},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.4693122},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39429274},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3676859},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23784292},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.09060928},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.80","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1663792126","https://openalex.org/W1797539709","https://openalex.org/W1964357740","https://openalex.org/W2105934661","https://openalex.org/W2107171938","https://openalex.org/W2120879667","https://openalex.org/W2124690033","https://openalex.org/W2124776405","https://openalex.org/W2134327832","https://openalex.org/W2137454506","https://openalex.org/W2293807537"],"related_works":["https://openalex.org/W4287185323","https://openalex.org/W4226315710","https://openalex.org/W3120843198","https://openalex.org/W3116827148","https://openalex.org/W3083782034","https://openalex.org/W2995801509","https://openalex.org/W2799656149","https://openalex.org/W2606910468","https://openalex.org/W2154965898","https://openalex.org/W2036704594"],"abstract_inverted_index":{"In":[0,54,109],"this":[1,55,110],"paper":[2],"we":[3,57,112,130],"present":[4],"a":[5,59],"novel":[6,60],"approach":[7,144],"for":[8,135],"nonlinear":[9,32,88,103],"time":[10,61,149,156],"series":[11,62,150,157],"prediction":[12,50],"using":[13,96],"kernel":[14,17,65,127],"methods.":[15,75,128],"The":[16,140],"methods":[18],"such":[19],"as":[20,151,153],"support":[21,26],"vector":[22,27],"machine":[23],"(SVM)":[24],"and":[25,36,72,105],"regression":[28],"(SVR)":[29],"deal":[30],"with":[31,68],"problems":[33],"assuming":[34],"independent":[35],"identically":[37],"distributed":[38],"(i.i.d.)":[39],"data,":[40],"without":[41],"explicit":[42],"notion":[43],"of":[44,49,80,115,119,142],"time.":[45],"However,":[46],"the":[47,78,85,143],"problem":[48],"necessitates":[51],"temporal":[52],"information.":[53],"regard,":[56],"propose":[58],"modeling":[63],"technique,":[64],"auto-regressive":[66,89],"model":[67,82,92,137],"exogenous":[69,90],"inputs":[70],"(KARX)":[71],"associated":[73],"estimation":[74,133],"Amongst":[76],"others":[77],"advantage":[79],"KARX":[81],"compared":[83],"to":[84],"widely":[86],"used":[87,125],"(NARX)":[91],"(which":[93],"is":[94,123,145],"implemented":[95],"artificial":[97,148],"neural":[98],"network":[99],"(ANN))":[100],"is,":[101],"implicit":[102],"mapping":[104],"better":[106],"regularization":[107],"capability.":[108],"work,":[111],"make":[113],"use":[114],"Kalman":[116],"recursions":[117],"instead":[118],"quadratic":[120],"programming":[121],"which":[122],"generally":[124],"in":[126],"Also,":[129],"employ":[131],"online":[132],"schemes":[134],"estimating":[136],"noise":[138],"parameters.":[139],"efficacy":[141],"demonstrated":[146],"on":[147],"well":[152],"real":[154],"world":[155],"acquired":[158],"from":[159],"aircraft":[160],"engines":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2129089781","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2018,"cited_by_count":1}],"updated_date":"2025-01-20T16:54:26.176569","created_date":"2016-06-24"}