{"id":"https://openalex.org/W2130275687","doi":"https://doi.org/10.1109/iccta.2007.69","title":"Hyperspectral Image Analysis--A Robust Algorithm Using Support Vectors and Principal Components","display_name":"Hyperspectral Image Analysis--A Robust Algorithm Using Support Vectors and Principal Components","publication_year":2007,"publication_date":"2007-03-01","ids":{"openalex":"https://openalex.org/W2130275687","doi":"https://doi.org/10.1109/iccta.2007.69","mag":"2130275687"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.69","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5087288558","display_name":"S. Sindhumol","orcid":null},"institutions":[{"id":"https://openalex.org/I4210163881","display_name":"Avenir Health","ror":"https://ror.org/05k833b90","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210163881"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Sindhumol","raw_affiliation_strings":["Dept. of Inf. Technol., Avenir Comput. Services Export Pvt. Ltd., Kerala"],"affiliations":[{"raw_affiliation_string":"Dept. of Inf. Technol., Avenir Comput. Services Export Pvt. Ltd., Kerala","institution_ids":["https://openalex.org/I4210163881"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5089737329","display_name":"M. Wilscy","orcid":null},"institutions":[{"id":"https://openalex.org/I158338959","display_name":"University of Kerala","ror":"https://ror.org/05tqa9940","country_code":"IN","type":"education","lineage":["https://openalex.org/I158338959"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"M. Wilscy","raw_affiliation_strings":["University of Kerala"],"affiliations":[{"raw_affiliation_string":"University of Kerala","institution_ids":["https://openalex.org/I158338959"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.121,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.666667,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"389","last_page":"395"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9845,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.41329792}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.9350514},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.90919423},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.73520225},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.681992},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6322218},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62903833},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46925163},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.4478015},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4206033},{"id":"https://openalex.org/C105611402","wikidata":"https://www.wikidata.org/wiki/Q2976589","display_name":"Spectral clustering","level":3,"score":0.41329792},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33326775}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.69","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1943383135","https://openalex.org/W2005073772","https://openalex.org/W2010319424","https://openalex.org/W2010735452","https://openalex.org/W2027461913","https://openalex.org/W2066015174","https://openalex.org/W2067782748","https://openalex.org/W2078455576","https://openalex.org/W2084138550","https://openalex.org/W2097900616","https://openalex.org/W2106777458","https://openalex.org/W2118634086","https://openalex.org/W2127218421","https://openalex.org/W2132648706","https://openalex.org/W2139212933","https://openalex.org/W2148603752","https://openalex.org/W2150434735","https://openalex.org/W2170120409","https://openalex.org/W2312997001","https://openalex.org/W2606306511"],"related_works":["https://openalex.org/W4389669152","https://openalex.org/W4387893611","https://openalex.org/W4317486777","https://openalex.org/W2579148721","https://openalex.org/W2347335694","https://openalex.org/W2132083814","https://openalex.org/W2091056927","https://openalex.org/W2067407580","https://openalex.org/W2038514069","https://openalex.org/W1967233468"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,64],"new":[4],"algorithm":[5,96,127],"for":[6],"hyperspectral":[7,92,101],"image":[8,93,102],"analysis":[9,20,34],"using":[10,75],"spectral-angle":[11],"based":[12,30,58,71,77],"support":[13,73],"vector":[14],"clustering":[15],"(SVC)":[16],"and":[17,45,128,135],"principal":[18,32],"component":[19,33],"(PCA).":[21],"In":[22],"the":[23,41,53,125],"classical":[24],"approach":[25],"to":[26,67,87],"hyper-spectral":[27,113],"dimensionality":[28,61],"reduction":[29,62],"on":[31,72],"(PCA),":[35],"no":[36],"meaning":[37],"or":[38],"behavior":[39],"of":[40,105,124],"spectrum":[42],"is":[43,63,79,85,97,142],"considered":[44],"results":[46,90],"are":[47,110],"influenced":[48],"by":[49],"majority":[50],"components":[51],"in":[52,81,91],"scene.":[54],"A":[55,121],"spectral":[56,76,138],"angle":[57,139],"classification":[59],"before":[60],"possible":[65],"solution":[66],"this":[68,82],"problem.":[69],"Clustering":[70],"vectors":[74],"kernels":[78],"proposed":[80,126],"work,":[83],"which":[84,109],"found":[86],"generate":[88],"good":[89],"classification.":[94],"The":[95],"tested":[98],"with":[99,112,137],"two":[100,130],"data":[103],"sets":[104],"210":[106],"bands":[107],"each,":[108],"taken":[111],"digital":[114],"imagery":[115],"collection":[116],"experiment":[117],"(HYDICE)":[118],"air-borne":[119],"sensors.":[120],"comparative":[122],"study":[123],"other":[129],"conventional":[131],"algorithms":[132],"(PCA":[133],"alone":[134],"PCA":[136],"mapping":[140],"(SAM))":[141],"also":[143],"done":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2130275687","counts_by_year":[{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2013,"cited_by_count":2}],"updated_date":"2025-01-20T16:55:03.711920","created_date":"2016-06-24"}