{"id":"https://openalex.org/W1967211151","doi":"https://doi.org/10.1109/iccta.2007.103","title":"Pattern Recognition in Mining High-Throughput Genomics/Proteomics Data: The New Challenges in Old Questions","display_name":"Pattern Recognition in Mining High-Throughput Genomics/Proteomics Data: The New Challenges in Old Questions","publication_year":2007,"publication_date":"2007-03-01","ids":{"openalex":"https://openalex.org/W1967211151","doi":"https://doi.org/10.1109/iccta.2007.103","mag":"1967211151"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.103","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081242795","display_name":"Xuegong Zhang","orcid":"https://orcid.org/0000-0002-9684-5643"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Xuegong Zhang","raw_affiliation_strings":["Dept. of Autom., Tsinghua Univ., Beijing#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Autom., Tsinghua Univ., Beijing#TAB#","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5081242795"],"corresponding_institution_ids":["https://openalex.org/I99065089"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.293184,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":63,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"242","last_page":"244"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10885","display_name":"Gene expression and cancer classification","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.975,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10887","display_name":"Bioinformatics and Genomic Networks","score":0.9664,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/biomarker-discovery","display_name":"Biomarker Discovery","score":0.52739877},{"id":"https://openalex.org/keywords/profiling","display_name":"Profiling (computer programming)","score":0.45320418}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6693002},{"id":"https://openalex.org/C46111723","wikidata":"https://www.wikidata.org/wiki/Q471857","display_name":"Proteomics","level":3,"score":0.5761673},{"id":"https://openalex.org/C189206191","wikidata":"https://www.wikidata.org/wiki/Q222046","display_name":"Genomics","level":4,"score":0.5338812},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5275663},{"id":"https://openalex.org/C124535831","wikidata":"https://www.wikidata.org/wiki/Q4915074","display_name":"Biomarker discovery","level":4,"score":0.52739877},{"id":"https://openalex.org/C187191949","wikidata":"https://www.wikidata.org/wiki/Q1138496","display_name":"Profiling (computer programming)","level":2,"score":0.45320418},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44264922},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42854494},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.42510897},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.41746837},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.41594267},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41588265},{"id":"https://openalex.org/C152662350","wikidata":"https://www.wikidata.org/wiki/Q815297","display_name":"Systems biology","level":2,"score":0.41022873},{"id":"https://openalex.org/C70721500","wikidata":"https://www.wikidata.org/wiki/Q177005","display_name":"Computational biology","level":1,"score":0.3451689},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.1969533},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.17302576},{"id":"https://openalex.org/C141231307","wikidata":"https://www.wikidata.org/wiki/Q7020","display_name":"Genome","level":3,"score":0.16648778},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.07915741},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccta.2007.103","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4252521128","https://openalex.org/W4240956634","https://openalex.org/W3028106195","https://openalex.org/W2985540061","https://openalex.org/W2943300910","https://openalex.org/W2589019771","https://openalex.org/W2185012154","https://openalex.org/W2161444195","https://openalex.org/W2115386182","https://openalex.org/W2062993691"],"abstract_inverted_index":{"Summary":[0],"form":[1],"only":[2],"given.":[3],"The":[4,172],"current":[5],"molecular":[6,170],"biology":[7,10],"and":[8,20,25,35,45,100,103,147,188],"systems":[9],"is":[11,86,177],"featured":[12],"by":[13,133],"the":[14,42,64,69,73,87,90,113,126,140,163,196],"rapid":[15],"accumulation":[16],"of":[17,72,89,115,118,129,142,145,162,174],"high-throughput":[18,168],"genomics":[19],"proteomics":[21],"data":[22,187],"like":[23],"microarray":[24,34,102],"mass":[26],"spectrometry":[27],"(MS)":[28],"data.":[29,105],"Through":[30],"our":[31],"study":[32],"on":[33],"MS":[36,104],"data,":[37],"we":[38,138],"have":[39],"observed":[40],"that":[41,53,193],"cancer":[43],"classification":[44,74],"gene/biomarker":[46,81],"selection":[47],"task":[48],"has":[49],"many":[50],"unique":[51],"characteristics":[52],"distinguish":[54],"itself":[55],"from":[56],"other":[57],"standard":[58],"pattern":[59,164],"recognition":[60,165],"tasks.":[61],"Due":[62],"to":[63,185],"extremely":[65],"small":[66],"sample":[67],"size,":[68],"reliable":[70],"assessment":[71],"accuracy":[75],"becomes":[76],"a":[77,83,108,119,149,178],"major":[78],"question.":[79],"For":[80,124],"selection,":[82],"key":[84,179],"question":[85],"significance":[88,128,144],"selected":[91,132],"genes/marker.":[92],"We":[93,106],"studied":[94],"these":[95],"questions":[96,157,176,198],"with":[97],"both":[98],"simulated":[99],"real":[101],"developed":[107,148],"perturbation-based":[109],"method":[110],"for":[111,152,180,189],"estimating":[112,153],"distribution":[114],"error":[116],"rates":[117],"support":[120],"vector":[121],"machine":[122,135],"classifier.":[123],"evaluating":[125],"statistical":[127],"gene":[130],"lists":[131],"sophisticated":[134],"learning":[136],"methods,":[137],"defined":[139],"problem":[141],"rank":[143],"genes":[146],"heuristic":[150],"strategy":[151],"this":[154],"significance.":[155],"These":[156],"highlight":[158],"two":[159],"important":[160],"aspects":[161],"problems":[166],"in":[167],"computational":[169,183],"biology.":[171],"awareness":[173],"such":[175],"properly":[181],"applying":[182],"methods":[184,192],"practical":[186],"developing":[190],"new":[191],"really":[194],"target":[195],"scientific":[197]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1967211151","counts_by_year":[{"year":2017,"cited_by_count":1}],"updated_date":"2024-12-10T12:34:43.461484","created_date":"2016-06-24"}