{"id":"https://openalex.org/W2939949661","doi":"https://doi.org/10.1109/iccnc.2019.8685524","title":"Age Minimization of Multiple Flows using Reinforcement Learning","display_name":"Age Minimization of Multiple Flows using Reinforcement Learning","publication_year":2019,"publication_date":"2019-02-01","ids":{"openalex":"https://openalex.org/W2939949661","doi":"https://doi.org/10.1109/iccnc.2019.8685524","mag":"2939949661"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccnc.2019.8685524","pdf_url":null,"source":{"id":"https://openalex.org/S4306498049","display_name":"2016 International Conference on Computing, Networking and Communications (ICNC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091785648","display_name":"Hasan Burhan Beytur","orcid":null},"institutions":[{"id":"https://openalex.org/I201799495","display_name":"Middle East Technical University","ror":"https://ror.org/014weej12","country_code":"TR","type":"funder","lineage":["https://openalex.org/I201799495"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Hasan Burhan Beytur","raw_affiliation_strings":["Department of Electrical and Electronics Engineering, METU, Ankara, Turkey"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronics Engineering, METU, Ankara, Turkey","institution_ids":["https://openalex.org/I201799495"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038607553","display_name":"Elif Uysal\u2010Biyikoglu","orcid":"https://orcid.org/0000-0002-7258-4872"},"institutions":[{"id":"https://openalex.org/I201799495","display_name":"Middle East Technical University","ror":"https://ror.org/014weej12","country_code":"TR","type":"funder","lineage":["https://openalex.org/I201799495"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Elif Uysal","raw_affiliation_strings":["Department of Electrical and Electronics Engineering, METU, Ankara, Turkey"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronics Engineering, METU, Ankara, Turkey","institution_ids":["https://openalex.org/I201799495"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.884,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":45,"citation_normalized_percentile":{"value":0.930566,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"339","last_page":"343"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13553","display_name":"Age of Information Optimization","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13553","display_name":"Age of Information Optimization","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10300","display_name":"Congenital Heart Disease Studies","score":0.974,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12079","display_name":"IoT Networks and Protocols","score":0.9543,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5962678},{"id":"https://openalex.org/keywords/minification","display_name":"Minification","score":0.5529094},{"id":"https://openalex.org/keywords/performance-metric","display_name":"Performance metric","score":0.5088139}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7992448},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.78463864},{"id":"https://openalex.org/C75553542","wikidata":"https://www.wikidata.org/wiki/Q178161","display_name":"A priori and a posteriori","level":2,"score":0.7310443},{"id":"https://openalex.org/C206729178","wikidata":"https://www.wikidata.org/wiki/Q2271896","display_name":"Scheduling (production processes)","level":2,"score":0.61595833},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5962678},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.5607359},{"id":"https://openalex.org/C147764199","wikidata":"https://www.wikidata.org/wiki/Q6865248","display_name":"Minification","level":2,"score":0.5529094},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.5346965},{"id":"https://openalex.org/C55416958","wikidata":"https://www.wikidata.org/wiki/Q6206757","display_name":"Job shop scheduling","level":3,"score":0.52143097},{"id":"https://openalex.org/C2780898871","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Performance metric","level":2,"score":0.5088139},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39961028},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39765626},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36050838},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.33006132},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.20044714},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08468282},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C74172769","wikidata":"https://www.wikidata.org/wiki/Q1446839","display_name":"Routing (electronic design automation)","level":2,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iccnc.2019.8685524","pdf_url":null,"source":{"id":"https://openalex.org/S4306498049","display_name":"2016 International Conference on Computing, Networking and Communications (ICNC)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1640967807","https://openalex.org/W1677318746","https://openalex.org/W1993918491","https://openalex.org/W2066786775","https://openalex.org/W2260745325","https://openalex.org/W2516167305","https://openalex.org/W2586459757","https://openalex.org/W2744248483","https://openalex.org/W2752845512","https://openalex.org/W2761868869","https://openalex.org/W2801221059","https://openalex.org/W2885425266","https://openalex.org/W2917981112","https://openalex.org/W2962747376","https://openalex.org/W2962999278","https://openalex.org/W2963028458","https://openalex.org/W2963270598","https://openalex.org/W2963294159","https://openalex.org/W2963630011","https://openalex.org/W2963864421","https://openalex.org/W2963869148","https://openalex.org/W2964022677","https://openalex.org/W2964345816","https://openalex.org/W4300748846"],"related_works":["https://openalex.org/W4388311650","https://openalex.org/W4213379045","https://openalex.org/W4206466499","https://openalex.org/W4205832532","https://openalex.org/W3190401582","https://openalex.org/W3172150420","https://openalex.org/W2789293570","https://openalex.org/W2107725657","https://openalex.org/W2074319831","https://openalex.org/W1974309933"],"abstract_inverted_index":{"Age":[0],"of":[1,13,19,51,54,64,82,87,129],"Information":[2],"(AoI)":[3],"is":[4,24,90,145],"a":[5,20,59,126,139],"recently":[6],"proposed":[7,67],"performance":[8,63,136],"metric":[9,23],"measuring":[10],"the":[11,16,49,79,83,123,134,141],"freshness":[12],"data":[14],"at":[15],"receiving":[17],"side":[18],"flow.":[21],"This":[22],"particularly":[25],"suited":[26],"to":[27,78,91,96,103,122,138,147],"status-update":[28],"type":[29],"information":[30],"flows,":[31],"like":[32],"those":[33],"occurring":[34],"in":[35,68],"machine-type":[36],"communication":[37],"(MTC),":[38],"remote":[39],"monitoring":[40],"and":[41,106,113],"similar":[42],"applications.":[43],"In":[44],"this":[45,88],"paper,":[46],"we":[47],"consider":[48],"problem":[50],"AoI-optimal":[52],"scheduling":[53,65,98],"multiple":[55],"flows":[56],"served":[57],"by":[58],"single":[60],"server.":[61],"The":[62,85],"algorithms":[66],"previous":[69],"literature":[70],"has":[71],"been":[72],"shown":[73],"under":[74,150],"limited":[75],"assumptions,":[76],"due":[77],"analytical":[80],"intractability":[81],"problem.":[84],"goal":[86],"paper":[89],"apply":[92],"reinforcement":[93],"learning":[94],"methods":[95,116],"achieve":[97],"decisions":[99],"that":[100],"are":[101,117],"resilient":[102],"network":[104,124],"conditions":[105],"packet":[107],"arrival":[108],"processes.":[109],"Specifically,":[110],"Policy":[111],"Gradients":[112],"Deep":[114],"Q-Learning":[115],"employed.":[118],"These":[119],"can":[120],"adapt":[121],"without":[125],"priori":[127],"knowledge":[128],"its":[130],"parameters.":[131],"We":[132],"study":[133],"resulting":[135],"relative":[137],"benchmark,":[140],"MAF":[142],"algorithm,":[143],"which":[144],"known":[146],"be":[148],"optimal":[149],"certain":[151],"conditions.":[152]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2939949661","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":13},{"year":2019,"cited_by_count":5}],"updated_date":"2025-03-19T05:45:16.409108","created_date":"2019-04-25"}