{"id":"https://openalex.org/W4388937001","doi":"https://doi.org/10.1109/icccnt56998.2023.10307858","title":"Enhancing 3D Human Pose Estimation through Adversarial Learning and Graph Convolutional Networks","display_name":"Enhancing 3D Human Pose Estimation through Adversarial Learning and Graph Convolutional Networks","publication_year":2023,"publication_date":"2023-07-06","ids":{"openalex":"https://openalex.org/W4388937001","doi":"https://doi.org/10.1109/icccnt56998.2023.10307858"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icccnt56998.2023.10307858","pdf_url":null,"source":{"id":"https://openalex.org/S4363607876","display_name":"2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100459476","display_name":"Aman Sharma","orcid":"https://orcid.org/0000-0003-2263-7902"},"institutions":[{"id":"https://openalex.org/I101407740","display_name":"Chandigarh University","ror":"https://ror.org/05t4pvx35","country_code":"IN","type":"education","lineage":["https://openalex.org/I101407740"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Aman Sharma","raw_affiliation_strings":["Chandigarh University,Apex Institute of Technology (CSE),India"],"affiliations":[{"raw_affiliation_string":"Chandigarh University,Apex Institute of Technology (CSE),India","institution_ids":["https://openalex.org/I101407740"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060466468","display_name":"Shivani Kumari","orcid":"https://orcid.org/0000-0002-5311-9449"},"institutions":[{"id":"https://openalex.org/I101407740","display_name":"Chandigarh University","ror":"https://ror.org/05t4pvx35","country_code":"IN","type":"education","lineage":["https://openalex.org/I101407740"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Shivani Kumari","raw_affiliation_strings":["Chandigarh University,Apex Institute of Technology (CSE),India"],"affiliations":[{"raw_affiliation_string":"Chandigarh University,Apex Institute of Technology (CSE),India","institution_ids":["https://openalex.org/I101407740"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108309295","display_name":"Abhipsha Priyadarshini","orcid":null},"institutions":[{"id":"https://openalex.org/I101407740","display_name":"Chandigarh University","ror":"https://ror.org/05t4pvx35","country_code":"IN","type":"education","lineage":["https://openalex.org/I101407740"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Abhipsha Priyadarshini","raw_affiliation_strings":["Chandigarh University,Apex Institute of Technology (CSE),India"],"affiliations":[{"raw_affiliation_string":"Chandigarh University,Apex Institute of Technology (CSE),India","institution_ids":["https://openalex.org/I101407740"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064217481","display_name":"Pulkit Dwivedi","orcid":"https://orcid.org/0000-0002-1301-8993"},"institutions":[{"id":"https://openalex.org/I101407740","display_name":"Chandigarh University","ror":"https://ror.org/05t4pvx35","country_code":"IN","type":"education","lineage":["https://openalex.org/I101407740"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Pulkit Dwivedi","raw_affiliation_strings":["Chandigarh University,Apex Institute of Technology (CSE),India"],"affiliations":[{"raw_affiliation_string":"Chandigarh University,Apex Institute of Technology (CSE),India","institution_ids":["https://openalex.org/I101407740"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11227","display_name":"Diabetic Foot Ulcer Assessment and Management","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2712","display_name":"Endocrinology, Diabetes and Metabolism"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.83594143},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.67250836},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.6387545},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.540558},{"id":"https://openalex.org/keywords/generative-adversarial-network","display_name":"Generative adversarial network","score":0.436745}],"concepts":[{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.83594143},{"id":"https://openalex.org/C52102323","wikidata":"https://www.wikidata.org/wiki/Q1671968","display_name":"Pose","level":2,"score":0.7892959},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7703575},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6872722},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.67250836},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.6387545},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.5892601},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.5448321},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.540558},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4895793},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.48560423},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44530103},{"id":"https://openalex.org/C2780522230","wikidata":"https://www.wikidata.org/wiki/Q1140419","display_name":"Ambiguity","level":2,"score":0.44061688},{"id":"https://openalex.org/C2988773926","wikidata":"https://www.wikidata.org/wiki/Q25104379","display_name":"Generative adversarial network","level":3,"score":0.436745},{"id":"https://openalex.org/C2781181686","wikidata":"https://www.wikidata.org/wiki/Q4226068","display_name":"Coherence (philosophical gambling strategy)","level":2,"score":0.42096663},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41139048},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.37627706},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.162633},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.13554153},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10854092},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icccnt56998.2023.10307858","pdf_url":null,"source":{"id":"https://openalex.org/S4363607876","display_name":"2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":39,"referenced_works":["https://openalex.org/W1861492603","https://openalex.org/W2036196300","https://openalex.org/W2080873731","https://openalex.org/W2099333815","https://openalex.org/W2101032778","https://openalex.org/W2103015390","https://openalex.org/W2113325037","https://openalex.org/W2307770531","https://openalex.org/W2554247908","https://openalex.org/W2554777659","https://openalex.org/W2583372902","https://openalex.org/W2604375920","https://openalex.org/W2612706635","https://openalex.org/W2742737904","https://openalex.org/W2756050327","https://openalex.org/W2795089319","https://openalex.org/W2798646183","https://openalex.org/W2895689136","https://openalex.org/W2942602829","https://openalex.org/W2962896489","https://openalex.org/W2963102968","https://openalex.org/W2963225971","https://openalex.org/W2963402313","https://openalex.org/W2963598138","https://openalex.org/W2963876278","https://openalex.org/W2964016027","https://openalex.org/W2964062189","https://openalex.org/W2964221239","https://openalex.org/W2966735886","https://openalex.org/W2968459013","https://openalex.org/W3034448411","https://openalex.org/W3098473649","https://openalex.org/W3098612954","https://openalex.org/W4206236631","https://openalex.org/W4220746441","https://openalex.org/W4229073080","https://openalex.org/W4292065038","https://openalex.org/W4319777535","https://openalex.org/W4394911615"],"related_works":["https://openalex.org/W4379087245","https://openalex.org/W4308928038","https://openalex.org/W4294967731","https://openalex.org/W4288087796","https://openalex.org/W4200430540","https://openalex.org/W3217069185","https://openalex.org/W3200695403","https://openalex.org/W3141413246","https://openalex.org/W3049340819","https://openalex.org/W2982339091"],"abstract_inverted_index":{"Estimating":[0],"3D":[1,41,60,72,83,114,141],"human":[2,42,61,120,142],"pose":[3,43,143],"from":[4],"a":[5,10,37,67,71],"single":[6],"colored":[7],"image":[8],"presents":[9],"significant":[11],"challenge":[12],"due":[13],"to":[14,25,54,70],"depth":[15],"ambiguity.":[16],"Existing":[17],"techniques":[18],"often":[19],"treat":[20],"joint":[21,73,115],"locations":[22],"independently,":[23],"leading":[24],"potential":[26],"overfitting":[27],"and":[28,87,98,109,118,134],"limited":[29],"structural":[30],"coherence.":[31],"To":[32,90],"address":[33],"this,":[34],"we":[35],"propose":[36],"novel":[38],"approach":[39],"for":[40],"estimation":[44],"using":[45,75],"Generative":[46],"Adversarial":[47],"Networks":[48,103],"(GANs)":[49],"that":[50],"leverage":[51],"adversarial":[52],"training":[53],"learn":[55],"realistic":[56],"representations":[57],"of":[58,107],"the":[59,76,79,96],"body.":[62],"Our":[63,123],"method":[64],"involves":[65],"regressing":[66],"2D":[68],"input":[69],"location":[74,116],"generator,":[77],"while":[78],"discriminator":[80,99],"distinguishes":[81],"between":[82],"ground":[84],"truth":[85],"samples":[86],"projected":[88],"samples.":[89],"capture":[91],"spatial":[92],"relationships":[93],"effectively,":[94],"both":[95],"generator":[97],"employ":[100],"Graph":[101],"Convolutional":[102],"(GCNs).":[104],"This":[105],"integration":[106],"GCNs":[108],"GANs":[110],"yields":[111],"more":[112],"accurate":[113],"predictions":[117],"coherent":[119],"body":[121],"designs.":[122],"technique":[124],"outperforms":[125],"state-of-the-art":[126],"methods":[127],"on":[128],"popular":[129],"benchmark":[130],"datasets,":[131],"including":[132],"Human3.6M":[133],"HumanEva-I,":[135],"showcasing":[136],"its":[137],"efficacy":[138],"in":[139],"advancing":[140],"estimation.":[144]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388937001","counts_by_year":[],"updated_date":"2025-01-04T14:27:08.977021","created_date":"2023-11-24"}