{"id":"https://openalex.org/W4388937771","doi":"https://doi.org/10.1109/icccnt56998.2023.10307846","title":"Comparing Different Sequences of Pruning Algorithms for Hybrid Pruning","display_name":"Comparing Different Sequences of Pruning Algorithms for Hybrid Pruning","publication_year":2023,"publication_date":"2023-07-06","ids":{"openalex":"https://openalex.org/W4388937771","doi":"https://doi.org/10.1109/icccnt56998.2023.10307846"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icccnt56998.2023.10307846","pdf_url":null,"source":{"id":"https://openalex.org/S4363607876","display_name":"2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5052475901","display_name":"Thaker Pragnesh","orcid":null},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Thaker Pragnesh","raw_affiliation_strings":["National Institute of Technology, Karnataka,Department of Information Technology,Surathkal,India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Karnataka,Department of Information Technology,Surathkal,India","institution_ids":["https://openalex.org/I11880225"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032581304","display_name":"Biju R. Mohan","orcid":"https://orcid.org/0000-0002-3928-8924"},"institutions":[{"id":"https://openalex.org/I11880225","display_name":"National Institute of Technology Karnataka","ror":"https://ror.org/01hz4v948","country_code":"IN","type":"funder","lineage":["https://openalex.org/I11880225"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Biju R. Mohan","raw_affiliation_strings":["National Institute of Technology, Karnataka,Department of Information Technology,Surathkal,India"],"affiliations":[{"raw_affiliation_string":"National Institute of Technology, Karnataka,Department of Information Technology,Surathkal,India","institution_ids":["https://openalex.org/I11880225"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.445,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.440506,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9885,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.8640044},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.7454675},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.6471391},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.41790166}],"concepts":[{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.8640044},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7829472},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.7454675},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.6471391},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53555745},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5273824},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5030603},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.49348915},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.41790166},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41447225},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.36291498},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13820672},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icccnt56998.2023.10307846","pdf_url":null,"source":{"id":"https://openalex.org/S4363607876","display_name":"2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1686810756","https://openalex.org/W1904365287","https://openalex.org/W1996901117","https://openalex.org/W2117539524","https://openalex.org/W2119144962","https://openalex.org/W2194775991","https://openalex.org/W2276892413","https://openalex.org/W2707890836","https://openalex.org/W2783538964","https://openalex.org/W2808168148","https://openalex.org/W2962965870","https://openalex.org/W2963140066","https://openalex.org/W2963363373","https://openalex.org/W2964054038","https://openalex.org/W3080599598","https://openalex.org/W4246193833","https://openalex.org/W4302613003"],"related_works":["https://openalex.org/W84383711","https://openalex.org/W4362597605","https://openalex.org/W4297676672","https://openalex.org/W4245210885","https://openalex.org/W4242351093","https://openalex.org/W3009056573","https://openalex.org/W2922073769","https://openalex.org/W2075873371","https://openalex.org/W1585770001","https://openalex.org/W1574414179"],"abstract_inverted_index":{"Most":[0],"developers":[1,50],"face":[2],"two":[3],"significant":[4],"issues":[5],"while":[6,118],"designing":[7],"the":[8,15,35,40,88,109,134,140,152],"architecture":[9],"of":[10,115,127,137,193],"a":[11,30,43,55,160,167,174,182,197],"neural":[12],"network.":[13],"First,":[14],"available":[16],"dataset":[17,31,45],"for":[18,92],"many":[19],"real-life":[20],"problems":[21],"is":[22,32,46,85],"relatively":[23],"small,":[24],"leading":[25],"to":[26,38,76,86,95,113,143,195],"overfitting.":[27],"Second,":[28],"When":[29],"large":[33],"enough,":[34],"computation":[36],"cost":[37],"train":[39],"model":[41,57,90],"on":[42,78,133],"given":[44],"enormous.":[47],"Thus":[48],"most":[49],"use":[51],"transfer":[52,93],"learning":[53,94],"with":[54,159,166,173,181],"standard":[56,64,89],"like":[58],"VGGNet,":[59],"ResNet,":[60],"and":[61,68,98,150,177],"GoogleNet.":[62],"These":[63],"models":[65],"are":[66,106,121],"memory":[67,97],"computationally":[69],"expensive":[70],"during":[71],"inference,":[72],"making":[73],"them":[74],"infeasible":[75],"deploy":[77],"resource-constrained":[79],"devices.":[80],"The":[81],"recent":[82],"research":[83],"trend":[84],"compress":[87],"used":[91],"reduce":[96,144],"computing":[99],"costs.":[100,146],"In":[101],"CNN,":[102],"approximately":[103],"10%":[104,126],"parameters":[105,120,138],"present":[107,122],"in":[108,123,139],"convolution":[110,141],"layer,":[111],"contributing":[112,125],"90%":[114,119],"computational":[116,128,145],"cost,":[117],"dense,":[124],"cost.":[129],"This":[130],"paper":[131],"focuses":[132],"structure":[135],"pruning":[136,154,158,165,172,180,194],"layer":[142],"Here":[147],"we":[148,189],"explore":[149],"compare":[151],"following":[153],"technique,":[155],"1)":[156],"Channel":[157,171],"quantitative":[161,168],"score,":[162,169,176],"2)":[163],"Kernel":[164,179],"3)":[170],"similarity":[175,183],"4)":[178],"score.":[184],"Finally,":[185],"as":[186],"mentioned":[187],"earlier,":[188],"try":[190],"several":[191],"combinations":[192],"form":[196],"hybrid":[198],"pruning.":[199]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388937771","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-04-24T16:15:22.013405","created_date":"2023-11-24"}