{"id":"https://openalex.org/W4290996361","doi":"https://doi.org/10.1109/icc45855.2022.9838799","title":"A Novel Time Efficient Machine Learning-based Traffic Flow Prediction Method for Large Scale Road Network","display_name":"A Novel Time Efficient Machine Learning-based Traffic Flow Prediction Method for Large Scale Road Network","publication_year":2022,"publication_date":"2022-05-16","ids":{"openalex":"https://openalex.org/W4290996361","doi":"https://doi.org/10.1109/icc45855.2022.9838799"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45855.2022.9838799","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5115588788","display_name":"Zepu Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210159968","display_name":"Duke Kunshan University","ror":"https://ror.org/04sr5ys16","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170897317","https://openalex.org/I37461747","https://openalex.org/I4210159968"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zepu Wang","raw_affiliation_strings":["Duke Kunshan University, China","Duke University, China"],"affiliations":[{"raw_affiliation_string":"Duke Kunshan University, China","institution_ids":["https://openalex.org/I4210159968"]},{"raw_affiliation_string":"Duke University, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074451730","display_name":"Peng Sun","orcid":"https://orcid.org/0000-0001-8356-1329"},"institutions":[{"id":"https://openalex.org/I4210159968","display_name":"Duke Kunshan University","ror":"https://ror.org/04sr5ys16","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170897317","https://openalex.org/I37461747","https://openalex.org/I4210159968"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Peng Sun","raw_affiliation_strings":["Duke Kunshan University, China"],"affiliations":[{"raw_affiliation_string":"Duke Kunshan University, China","institution_ids":["https://openalex.org/I4210159968"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5012195474","display_name":"Azzedine Boukerche","orcid":"https://orcid.org/0000-0002-3851-9938"},"institutions":[{"id":"https://openalex.org/I153718931","display_name":"University of Ottawa","ror":"https://ror.org/03c4mmv16","country_code":"CA","type":"funder","lineage":["https://openalex.org/I153718931"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Azzedine Boukerche","raw_affiliation_strings":["University of Ottawa, Canada"],"affiliations":[{"raw_affiliation_string":"University of Ottawa, Canada","institution_ids":["https://openalex.org/I153718931"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.693,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.999185,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":"3532","last_page":"3537"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10524","display_name":"Traffic control and management","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/network-traffic-simulation","display_name":"Network traffic simulation","score":0.42457694}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.78106034},{"id":"https://openalex.org/C207512268","wikidata":"https://www.wikidata.org/wiki/Q3074551","display_name":"Traffic flow (computer networking)","level":2,"score":0.6107383},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.54827386},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.5274254},{"id":"https://openalex.org/C47796450","wikidata":"https://www.wikidata.org/wiki/Q508378","display_name":"Intelligent transportation system","level":2,"score":0.5121796},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.45052725},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43074006},{"id":"https://openalex.org/C2779913896","wikidata":"https://www.wikidata.org/wiki/Q7063001","display_name":"Notice","level":2,"score":0.43024227},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.42774755},{"id":"https://openalex.org/C94168897","wikidata":"https://www.wikidata.org/wiki/Q574324","display_name":"Network traffic simulation","level":4,"score":0.42457694},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4050058},{"id":"https://openalex.org/C201100257","wikidata":"https://www.wikidata.org/wiki/Q393287","display_name":"Network traffic control","level":3,"score":0.19721788},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.14138278},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13861409},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.08620876},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C158379750","wikidata":"https://www.wikidata.org/wiki/Q214111","display_name":"Network packet","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45855.2022.9838799","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.56}],"grants":[{"funder":"https://openalex.org/F4320320994","funder_display_name":"Canada Research Chairs","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1488841676","https://openalex.org/W1571401318","https://openalex.org/W1602102683","https://openalex.org/W1924770834","https://openalex.org/W1991401171","https://openalex.org/W2000636475","https://openalex.org/W2036785686","https://openalex.org/W2076063813","https://openalex.org/W2077537883","https://openalex.org/W2084101436","https://openalex.org/W2088863311","https://openalex.org/W2140095548","https://openalex.org/W2572939427","https://openalex.org/W2583110309","https://openalex.org/W2594376584","https://openalex.org/W2805085159","https://openalex.org/W2889968392","https://openalex.org/W2904096562","https://openalex.org/W2965092899","https://openalex.org/W2982294315","https://openalex.org/W2991205212","https://openalex.org/W3003523720","https://openalex.org/W3015927450","https://openalex.org/W3021377491","https://openalex.org/W3031632615","https://openalex.org/W3046142892","https://openalex.org/W3049690032","https://openalex.org/W3109674698","https://openalex.org/W3125634432","https://openalex.org/W3160559475","https://openalex.org/W3166291381"],"related_works":["https://openalex.org/W624967826","https://openalex.org/W584830394","https://openalex.org/W2587362999","https://openalex.org/W2394010358","https://openalex.org/W2390054499","https://openalex.org/W2382229020","https://openalex.org/W2378743274","https://openalex.org/W2149758038","https://openalex.org/W2149721642","https://openalex.org/W2008840139"],"abstract_inverted_index":{"How":[0],"to":[1,181],"effectively":[2],"improve":[3],"the":[4,8,17,30,37,61,74,78,86,92,95,108,111,120,131,152,165,174,182],"traffic":[5,41,47,62,123],"efficiency":[6,176],"of":[7,20,32,88,94,110,122,135,177],"road":[9,147],"network":[10,148],"plays":[11],"a":[12,26,140,145,170],"crucial":[13],"role":[14],"in":[15,29,126,173],"ensuring":[16,157],"regular":[18],"operation":[19],"modern":[21],"society.":[22],"This":[23],"is":[24,50],"also":[25],"key":[27],"concern":[28],"field":[31],"intelligent":[33],"transportation":[34],"systems.":[35],"As":[36],"basis":[38],"for":[39,59,119,144],"formulating":[40],"control":[42],"strategies,":[43],"efficient":[44],"and":[45,82,164],"accurate":[46],"flow":[48,63],"forecasting":[49],"essential.":[51],"Accordingly,":[52],"various":[53],"prediction":[54,64,96,112,142,153,158],"methods":[55],"have":[56],"been":[57],"proposed":[58,139],"addressing":[60],"issue.":[65],"However,":[66],"we":[67,138],"notice":[68],"that":[69,149],"most":[70],"researchers":[71],"only":[72],"take":[73],"accuracy":[75,109],"performance":[76],"as":[77],"primary":[79],"evaluation":[80],"criteria":[81],"do":[83],"not":[84],"consider":[85],"problem":[87],"time":[89,155,175],"cost.":[90],"Consequently,":[91],"timeliness":[93],"results":[97,168],"cannot":[98,115],"be":[99],"guaranteed.":[100],"In":[101],"this":[102,127],"case,":[103],"no":[104],"matter":[105],"how":[106],"high":[107],"is,":[113],"it":[114],"provide":[116],"practical":[117],"information":[118],"formulation":[121],"measures.":[124],"Therefore,":[125],"paper,":[128],"by":[129],"exploiting":[130],"dimension":[132],"reduction":[133],"ability":[134],"Auto-Encoder":[136],"(AE),":[137],"time-efficient":[141],"method":[143,179],"large-scale":[146],"significantly":[150],"reduces":[151],"processing":[154],"while":[156],"accuracy.":[159],"We":[160],"conducted":[161],"simulation":[162],"experiments,":[163],"corresponding":[166],"test":[167],"demonstrate":[169],"substantial":[171],"improvement":[172],"our":[178],"compared":[180],"traditional":[183],"methods.":[184]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4290996361","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-04-03T05:42:15.363733","created_date":"2022-08-13"}