{"id":"https://openalex.org/W4387869959","doi":"https://doi.org/10.1109/icc45041.2023.10279562","title":"Adaptive Importance Sampling and Quasi-Monte Carlo Methods for 6G URLLC Systems","display_name":"Adaptive Importance Sampling and Quasi-Monte Carlo Methods for 6G URLLC Systems","publication_year":2023,"publication_date":"2023-05-28","ids":{"openalex":"https://openalex.org/W4387869959","doi":"https://doi.org/10.1109/icc45041.2023.10279562"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279562","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2303.03575","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026090307","display_name":"Xiongwen Ke","orcid":null},"institutions":[{"id":"https://openalex.org/I31746571","display_name":"UNSW Sydney","ror":"https://ror.org/03r8z3t63","country_code":"AU","type":"education","lineage":["https://openalex.org/I31746571"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Xiongwen Ke","raw_affiliation_strings":["The University of New South Wales, Australia"],"affiliations":[{"raw_affiliation_string":"The University of New South Wales, Australia","institution_ids":["https://openalex.org/I31746571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070192279","display_name":"Houying Zhu","orcid":"https://orcid.org/0000-0002-2515-7413"},"institutions":[{"id":"https://openalex.org/I99043593","display_name":"Macquarie University","ror":"https://ror.org/01sf06y89","country_code":"AU","type":"education","lineage":["https://openalex.org/I99043593"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Houying Zhu","raw_affiliation_strings":["Macquarie University, Australia"],"affiliations":[{"raw_affiliation_string":"Macquarie University, Australia","institution_ids":["https://openalex.org/I99043593"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100765686","display_name":"Kai Yi","orcid":"https://orcid.org/0000-0003-0415-3584"},"institutions":[{"id":"https://openalex.org/I31746571","display_name":"UNSW Sydney","ror":"https://ror.org/03r8z3t63","country_code":"AU","type":"education","lineage":["https://openalex.org/I31746571"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Kai Yi","raw_affiliation_strings":["The University of New South Wales, Australia"],"affiliations":[{"raw_affiliation_string":"The University of New South Wales, Australia","institution_ids":["https://openalex.org/I31746571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110963608","display_name":"Gaoning He","orcid":null},"institutions":[{"id":"https://openalex.org/I2250955327","display_name":"Huawei Technologies (China)","ror":"https://ror.org/00cmhce21","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250955327"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gaoning He","raw_affiliation_strings":["Huawei Technologies, Co. Ltd., Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Huawei Technologies, Co. Ltd., Shanghai, China","institution_ids":["https://openalex.org/I2250955327"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108731843","display_name":"Ganghua Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I2250955327","display_name":"Huawei Technologies (China)","ror":"https://ror.org/00cmhce21","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250955327"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ganghua Yang","raw_affiliation_strings":["Huawei Technologies, Co. Ltd., Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Huawei Technologies, Co. Ltd., Shanghai, China","institution_ids":["https://openalex.org/I2250955327"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070236689","display_name":"Yu Guang Wang","orcid":"https://orcid.org/0000-0002-7450-0273"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Guang Wang","raw_affiliation_strings":["Shanghai Jiao Tong University, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.062,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":1,"citation_normalized_percentile":{"value":0.69697,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":78},"biblio":{"volume":null,"issue":null,"first_page":"5272","last_page":"5278"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12404","display_name":"Mathematical Approximation and Integration","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2612","display_name":"Numerical Analysis"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12404","display_name":"Mathematical Approximation and Integration","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2612","display_name":"Numerical Analysis"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11720","display_name":"Probability and Risk Models","score":0.9889,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12056","display_name":"Markov Chains and Monte Carlo Methods","score":0.9888,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rejection-sampling","display_name":"Rejection sampling","score":0.58782893},{"id":"https://openalex.org/keywords/quasi-monte-carlo-method","display_name":"Quasi-Monte Carlo method","score":0.51308024}],"concepts":[{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.7945492},{"id":"https://openalex.org/C52740198","wikidata":"https://www.wikidata.org/wiki/Q1539564","display_name":"Importance sampling","level":3,"score":0.7315319},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72034216},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.60734934},{"id":"https://openalex.org/C169334058","wikidata":"https://www.wikidata.org/wiki/Q353292","display_name":"Additive white Gaussian noise","level":3,"score":0.59206533},{"id":"https://openalex.org/C187192777","wikidata":"https://www.wikidata.org/wiki/Q381699","display_name":"Rejection sampling","level":5,"score":0.58782893},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.57294214},{"id":"https://openalex.org/C63320529","wikidata":"https://www.wikidata.org/wiki/Q7269435","display_name":"Quasi-Monte Carlo method","level":5,"score":0.51308024},{"id":"https://openalex.org/C57869625","wikidata":"https://www.wikidata.org/wiki/Q1783502","display_name":"Rate of convergence","level":3,"score":0.42621338},{"id":"https://openalex.org/C56296756","wikidata":"https://www.wikidata.org/wiki/Q840922","display_name":"Bit error rate","level":3,"score":0.41354746},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.36292446},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.2917648},{"id":"https://openalex.org/C112633086","wikidata":"https://www.wikidata.org/wiki/Q381287","display_name":"White noise","level":2,"score":0.23326957},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.21057615},{"id":"https://openalex.org/C13153151","wikidata":"https://www.wikidata.org/wiki/Q1639846","display_name":"Hybrid Monte Carlo","level":4,"score":0.20946354},{"id":"https://openalex.org/C111350023","wikidata":"https://www.wikidata.org/wiki/Q1191869","display_name":"Markov chain Monte Carlo","level":3,"score":0.15493783},{"id":"https://openalex.org/C57273362","wikidata":"https://www.wikidata.org/wiki/Q576722","display_name":"Decoding methods","level":2,"score":0.13603199},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.09696892},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279562","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.03575","pdf_url":"https://arxiv.org/pdf/2303.03575","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2303.03575","pdf_url":"https://arxiv.org/pdf/2303.03575","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1607458528","https://openalex.org/W1665662210","https://openalex.org/W187762159","https://openalex.org/W1976544585","https://openalex.org/W1978501336","https://openalex.org/W1979969656","https://openalex.org/W2092591309","https://openalex.org/W2106864314","https://openalex.org/W2106882512","https://openalex.org/W2120923653","https://openalex.org/W2130266946","https://openalex.org/W2131034613","https://openalex.org/W2133351825","https://openalex.org/W2210946094","https://openalex.org/W2735102987","https://openalex.org/W2963824660","https://openalex.org/W2964193315","https://openalex.org/W2988512673","https://openalex.org/W3106529729","https://openalex.org/W3120073684","https://openalex.org/W4221016352","https://openalex.org/W4250897953","https://openalex.org/W4288091789","https://openalex.org/W4300580367","https://openalex.org/W4324100080","https://openalex.org/W598051755","https://openalex.org/W648263199","https://openalex.org/W788570312","https://openalex.org/W87152119"],"related_works":["https://openalex.org/W4323650586","https://openalex.org/W4234882310","https://openalex.org/W2153934880","https://openalex.org/W2127967590","https://openalex.org/W2122865681","https://openalex.org/W2116791275","https://openalex.org/W2065756054","https://openalex.org/W2004707959","https://openalex.org/W1964820882","https://openalex.org/W1517267890"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3],"propose":[4],"an":[5],"efficient":[6],"simulation":[7],"method":[8,67,93],"based":[9,25],"on":[10,26],"adaptive":[11],"importance":[12,78],"sampling,":[13,53],"which":[14,46],"can":[15,54],"automatically":[16],"find":[17],"the":[18,22,31,56,64,73,89,95],"optimal":[19],"proposal":[20],"within":[21,68],"Gaussian":[23],"family":[24],"previous":[27],"samples,":[28],"to":[29,71,83],"evaluate":[30],"probability":[32],"of":[33,58],"bit":[34],"error":[35,40],"rate":[36,41],"(BER)":[37],"or":[38],"word":[39],"(WER).":[42],"These":[43],"two":[44],"measures,":[45],"involve":[47],"high-dimensional":[48],"black-box":[49],"integration":[50],"and":[51],"rare-event":[52],"characterize":[55],"performance":[57],"coded":[59],"modulation.":[60],"We":[61],"further":[62],"integrate":[63],"quasi-Monte":[65],"Carlo":[66,92],"our":[69],"framework":[70],"improve":[72],"convergence":[74],"speed.":[75],"The":[76],"proposed":[77],"sampling":[79],"algorithm":[80],"is":[81],"demonstrated":[82],"have":[84],"much":[85],"higher":[86],"efficiency":[87],"than":[88],"standard":[90],"Monte":[91],"in":[94],"AWGN":[96],"scenario.":[97]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387869959","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-07T15:42:13.315715","created_date":"2023-10-24"}