{"id":"https://openalex.org/W4387869765","doi":"https://doi.org/10.1109/icc45041.2023.10279148","title":"Construct New Graphs Using Information Bottleneck Against Property Inference Attacks","display_name":"Construct New Graphs Using Information Bottleneck Against Property Inference Attacks","publication_year":2023,"publication_date":"2023-05-28","ids":{"openalex":"https://openalex.org/W4387869765","doi":"https://doi.org/10.1109/icc45041.2023.10279148"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279148","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061304518","display_name":"Chenhan Zhang","orcid":"https://orcid.org/0000-0002-2352-0485"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Chenhan Zhang","raw_affiliation_strings":["School of Computer Science, University of Technology Sydney, Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, University of Technology Sydney, Sydney, Australia","institution_ids":["https://openalex.org/I114017466"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059567156","display_name":"Zhiyi Tian","orcid":"https://orcid.org/0000-0001-8905-0941"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Zhiyi Tian","raw_affiliation_strings":["School of Computer Science, University of Technology Sydney, Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, University of Technology Sydney, Sydney, Australia","institution_ids":["https://openalex.org/I114017466"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076130415","display_name":"James J. Q. Yu","orcid":"https://orcid.org/0000-0002-6392-6711"},"institutions":[{"id":"https://openalex.org/I3045169105","display_name":"Southern University of Science and Technology","ror":"https://ror.org/049tv2d57","country_code":"CN","type":"funder","lineage":["https://openalex.org/I3045169105"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"James J.Q. Yu","raw_affiliation_strings":["Dept. of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China","institution_ids":["https://openalex.org/I3045169105"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005228053","display_name":"Shui Yu","orcid":"https://orcid.org/0000-0003-4485-6743"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Shui Yu","raw_affiliation_strings":["School of Computer Science, University of Technology Sydney, Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, University of Technology Sydney, Sydney, Australia","institution_ids":["https://openalex.org/I114017466"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.691,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.431761,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"765","last_page":"770"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10764","display_name":"Privacy-Preserving Technologies in Data","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9869,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.5050698},{"id":"https://openalex.org/keywords/graph-property","display_name":"Graph property","score":0.4638856}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7246161},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6949965},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.6131259},{"id":"https://openalex.org/C2780513914","wikidata":"https://www.wikidata.org/wiki/Q18210350","display_name":"Bottleneck","level":2,"score":0.5557649},{"id":"https://openalex.org/C189950617","wikidata":"https://www.wikidata.org/wiki/Q937228","display_name":"Property (philosophy)","level":2,"score":0.52842885},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.5050698},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49580893},{"id":"https://openalex.org/C64339825","wikidata":"https://www.wikidata.org/wiki/Q722659","display_name":"Graph property","level":5,"score":0.4638856},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34348905},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.33006936},{"id":"https://openalex.org/C203776342","wikidata":"https://www.wikidata.org/wiki/Q1378376","display_name":"Line graph","level":3,"score":0.1256901},{"id":"https://openalex.org/C22149727","wikidata":"https://www.wikidata.org/wiki/Q7940747","display_name":"Voltage graph","level":4,"score":0.08251476},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279148","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1686946872","https://openalex.org/W2294347342","https://openalex.org/W2320204756","https://openalex.org/W2577492210","https://openalex.org/W2803832867","https://openalex.org/W2962835266","https://openalex.org/W2964015378","https://openalex.org/W3036851434","https://openalex.org/W3094193403","https://openalex.org/W3125963848","https://openalex.org/W3156502157","https://openalex.org/W3156842467","https://openalex.org/W3189076644","https://openalex.org/W3189551349","https://openalex.org/W3201301914","https://openalex.org/W3204085787","https://openalex.org/W4221155126","https://openalex.org/W4224298369","https://openalex.org/W4225977739","https://openalex.org/W4280535549","https://openalex.org/W4281396648","https://openalex.org/W4281481572","https://openalex.org/W4285723986","https://openalex.org/W4293469690","https://openalex.org/W4296338020","https://openalex.org/W4322614756"],"related_works":["https://openalex.org/W4382618745","https://openalex.org/W2885125400","https://openalex.org/W2748922771","https://openalex.org/W2743976221","https://openalex.org/W2595172197","https://openalex.org/W2127970246","https://openalex.org/W2084856301","https://openalex.org/W1989889224","https://openalex.org/W1987128138","https://openalex.org/W1973775000"],"abstract_inverted_index":{"Graphs":[0],"provide":[1],"a":[2,52,95],"unique":[3],"representation":[4],"of":[5,21,147,160,195],"real-":[6],"world":[7],"data.":[8],"However,":[9],"recent":[10],"studies":[11],"found":[12],"that":[13],"inference":[14,59,90,202],"attacks":[15,60,68,203],"can":[16,101],"extract":[17,102],"private":[18],"property":[19,58,89,104,145,158,201],"information":[20,44,81,141,146,159,174],"graph":[22,26,35,103,107,123,132,166],"data":[23],"from":[24,105,125,164],"trained":[25],"neural":[27],"networks":[28],"(GNNs),":[29],"which":[30],"arouses":[31],"privacy":[32],"concerns":[33],"about":[34],"data,":[36],"especially":[37],"in":[38,131,179,199],"collaborative":[39],"learning":[40],"systems":[41],"where":[42,98],"model":[43],"is":[45],"more":[46],"accessible.":[47],"While":[48],"there":[49],"has":[50,69],"been":[51,71],"few":[53],"research":[54],"efforts":[55],"on":[56],"the":[57,80,88,99,106,115,126,135,144,148,161,165,169,180,193,196],"against":[61,66,87,114],"GNNs,":[62],"how":[63],"to":[64,78,85,120,138,143,156,175,185],"defend":[65,86,113],"such":[67],"seldom":[70],"studied.":[72],"In":[73],"this":[74],"paper,":[75],"we":[76,93,117],"propose":[77],"leverage":[79],"bottleneck":[82],"(IB)":[83],"principle":[84,171],"attacks.":[91],"Particularly,":[92],"involve":[94],"threat":[96],"model,":[97],"attacker":[100],"embedding":[108],"developed":[109],"by":[110],"GNNs.":[111],"To":[112],"attacks,":[116],"use":[118],"IB":[119,170],"construct":[121],"new":[122,136,181],"structures":[124,133],"original":[127,149,162],"graphs.":[128],"The":[129,189],"change":[130],"enables":[134,172],"graphs":[137,163],"contain":[139],"less":[140],"related":[142],"graphs,":[150],"making":[151],"it":[152],"harder":[153],"for":[154],"attackers":[155],"infer":[157],"embeddings.":[167],"Meantime,":[168],"task-relevant":[173],"be":[176],"sufficiently":[177],"contained":[178],"graph,":[182],"enabling":[183],"GNNs":[184],"develop":[186],"accurate":[187,206],"predictions.":[188,207],"experimental":[190],"results":[191],"demonstrate":[192],"efficacy":[194],"proposed":[197],"approach":[198],"resisting":[200],"and":[204],"developing":[205]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387869765","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-17T10:21:38.109703","created_date":"2023-10-24"}