{"id":"https://openalex.org/W4387870829","doi":"https://doi.org/10.1109/icc45041.2023.10279019","title":"Inferring Spatiotemporal Mobility Patterns from Multidimensional Trip Data","display_name":"Inferring Spatiotemporal Mobility Patterns from Multidimensional Trip Data","publication_year":2023,"publication_date":"2023-05-28","ids":{"openalex":"https://openalex.org/W4387870829","doi":"https://doi.org/10.1109/icc45041.2023.10279019"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279019","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075541522","display_name":"Jeongyun Kim","orcid":"https://orcid.org/0000-0001-5004-7630"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jeongyun Kim","raw_affiliation_strings":["Massachusetts Institute of Technology,Wireless Information and Network Sciences Laboratory,Cambridge,MA,USA,02139"],"affiliations":[{"raw_affiliation_string":"Massachusetts Institute of Technology,Wireless Information and Network Sciences Laboratory,Cambridge,MA,USA,02139","institution_ids":["https://openalex.org/I63966007"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015500569","display_name":"Andrea Conti","orcid":"https://orcid.org/0000-0001-9224-2178"},"institutions":[{"id":"https://openalex.org/I201324441","display_name":"University of Ferrara","ror":"https://ror.org/041zkgm14","country_code":"IT","type":"education","lineage":["https://openalex.org/I201324441"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Conti","raw_affiliation_strings":["University of Ferrara,Department of Engineering and CNIT,Ferrara,Italy,44122"],"affiliations":[{"raw_affiliation_string":"University of Ferrara,Department of Engineering and CNIT,Ferrara,Italy,44122","institution_ids":["https://openalex.org/I201324441"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5067048409","display_name":"Moe Z. Win","orcid":"https://orcid.org/0000-0002-8573-0488"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Moe Z. Win","raw_affiliation_strings":["Massachusetts Institute of Technology,Wireless Information and Network Sciences Laboratory,Cambridge,MA,USA,02139"],"affiliations":[{"raw_affiliation_string":"Massachusetts Institute of Technology,Wireless Information and Network Sciences Laboratory,Cambridge,MA,USA,02139","institution_ids":["https://openalex.org/I63966007"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":67},"biblio":{"volume":null,"issue":null,"first_page":"3333","last_page":"3338"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10298","display_name":"Urban Transport and Accessibility","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.4471241},{"id":"https://openalex.org/keywords/mobility-model","display_name":"Mobility model","score":0.4295948}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76244354},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6986936},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.56112957},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.506595},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4986918},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.46623704},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.4471241},{"id":"https://openalex.org/C191485582","wikidata":"https://www.wikidata.org/wiki/Q6887309","display_name":"Mobility model","level":2,"score":0.4295948},{"id":"https://openalex.org/C2985793214","wikidata":"https://www.wikidata.org/wiki/Q3274096","display_name":"Utility maximization","level":2,"score":0.42851877},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.41469052},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.41230345},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.2924816},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.25714523},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.16339329},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.12952706},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1107541},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.08590853},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.0},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc45041.2023.10279019","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CNS-2148251"},{"funder":"https://openalex.org/F4320337345","funder_display_name":"Office of Naval Research","award_id":"N62909-22-1-2009"}],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1634255221","https://openalex.org/W1988580225","https://openalex.org/W2047888606","https://openalex.org/W2061308627","https://openalex.org/W2076087039","https://openalex.org/W2082729958","https://openalex.org/W2098162994","https://openalex.org/W2100979720","https://openalex.org/W2106403424","https://openalex.org/W2113298739","https://openalex.org/W2114092915","https://openalex.org/W2114978603","https://openalex.org/W2139153982","https://openalex.org/W2166506372","https://openalex.org/W2299288249","https://openalex.org/W2465297350","https://openalex.org/W2730580788","https://openalex.org/W2751045880","https://openalex.org/W2766236388","https://openalex.org/W2907177636","https://openalex.org/W3001314220","https://openalex.org/W3037245145","https://openalex.org/W3099751368","https://openalex.org/W40609341","https://openalex.org/W4211049159","https://openalex.org/W4229898513"],"related_works":["https://openalex.org/W4388998647","https://openalex.org/W4380149910","https://openalex.org/W4296628518","https://openalex.org/W3121521771","https://openalex.org/W30823005","https://openalex.org/W2741533395","https://openalex.org/W2490250203","https://openalex.org/W2393902186","https://openalex.org/W2267645079","https://openalex.org/W2118922860"],"abstract_inverted_index":{"The":[0,115,137],"massive":[1],"amount":[2],"of":[3,20,24,38,86,125,133,145],"data":[4,135,148],"related":[5],"to":[6,12,31,70,109,122],"spatiotem-poral":[7],"mobility":[8,25,72,87,96,147],"offers":[9],"new":[10],"opportunities":[11],"understand":[13],"human":[14],"behaviors.":[15],"However,":[16],"with":[17],"the":[18,82,104,118,123,131,150],"increase":[19],"volume":[21],"and":[22,35,49,84,127,130],"complexity":[23,83],"data,":[26],"it":[27],"has":[28],"become":[29],"challenging":[30,48],"retrieve":[32],"important":[33],"information":[34],"critical":[36],"features":[37],"spatiotemporal":[39,151],"mobility.":[40],"In":[41],"particular,":[42],"predicting":[43],"large-scale":[44,146],"travel":[45,64],"demands":[46],"is":[47,92,101,107],"requires":[50],"a":[51,58,68,75,142],"high":[52],"computational":[53],"load.":[54],"This":[55],"paper":[56],"introduces":[57],"data-driven":[59],"approach":[60,79],"for":[61,80,94],"estimating":[62],"high-dimensional":[63],"demands.":[65],"We":[66],"propose":[67],"method":[69],"identify":[71],"patterns":[73,129],"using":[74],"probabilistic":[76,138],"tensor":[77],"decomposition":[78],"interpreting":[81],"uncertainty":[85],"data.":[88,114],"Expectation-maximization":[89],"(EM)":[90],"algorithm":[91],"applied":[93,108],"inferring":[95],"patterns.":[97],"A":[98],"case":[99],"study":[100],"presented,":[102],"where":[103],"proposed":[105],"model":[106,119],"New":[110],"York":[111],"city":[112],"taxi":[113],"results":[116,140],"show":[117],"performance":[120],"according":[121],"number":[124,132],"origin":[126],"destination":[128],"trip":[134],"used.":[136],"modeling":[139],"provide":[141],"deeper":[143],"understanding":[144],"in":[149],"dimension.":[152]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4387870829","counts_by_year":[],"updated_date":"2025-01-07T15:42:50.334033","created_date":"2023-10-24"}