{"id":"https://openalex.org/W3192220534","doi":"https://doi.org/10.1109/icc42927.2021.9500325","title":"Deep Reinforcement Learning for Dynamic Spectrum Sharing of LTE and NR","display_name":"Deep Reinforcement Learning for Dynamic Spectrum Sharing of LTE and NR","publication_year":2021,"publication_date":"2021-06-01","ids":{"openalex":"https://openalex.org/W3192220534","doi":"https://doi.org/10.1109/icc42927.2021.9500325","mag":"3192220534"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc42927.2021.9500325","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2102.11176","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5020266992","display_name":"Ursula Challita","orcid":null},"institutions":[{"id":"https://openalex.org/I1306339040","display_name":"Ericsson (Sweden)","ror":"https://ror.org/05a7rhx54","country_code":"SE","type":"company","lineage":["https://openalex.org/I1306339040"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Ursula Challita","raw_affiliation_strings":["Ericsson Research, Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"Ericsson Research, Stockholm, Sweden","institution_ids":["https://openalex.org/I1306339040"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018363666","display_name":"David Sandberg","orcid":null},"institutions":[{"id":"https://openalex.org/I1306339040","display_name":"Ericsson (Sweden)","ror":"https://ror.org/05a7rhx54","country_code":"SE","type":"company","lineage":["https://openalex.org/I1306339040"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"David Sandberg","raw_affiliation_strings":["Ericsson Research, Stockholm, Sweden"],"affiliations":[{"raw_affiliation_string":"Ericsson Research, Stockholm, Sweden","institution_ids":["https://openalex.org/I1306339040"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.803,"has_fulltext":false,"cited_by_count":19,"citation_normalized_percentile":{"value":0.950856,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10148","display_name":"Advanced MIMO Systems Optimization","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10148","display_name":"Advanced MIMO Systems Optimization","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11409","display_name":"Advanced Wireless Network Optimization","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10579","display_name":"Cognitive Radio Networks and Spectrum Sensing","score":0.9804,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/subframe","display_name":"Subframe","score":0.71738595},{"id":"https://openalex.org/keywords/q-learning","display_name":"Q-learning","score":0.49849272}],"concepts":[{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.8494709},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81939626},{"id":"https://openalex.org/C2776514898","wikidata":"https://www.wikidata.org/wiki/Q7631141","display_name":"Subframe","level":3,"score":0.71738595},{"id":"https://openalex.org/C188116033","wikidata":"https://www.wikidata.org/wiki/Q2664563","display_name":"Q-learning","level":3,"score":0.49849272},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.49050635},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.46800983},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.3934476},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36640596},{"id":"https://openalex.org/C138660444","wikidata":"https://www.wikidata.org/wiki/Q5607897","display_name":"Telecommunications link","level":2,"score":0.24330166}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icc42927.2021.9500325","pdf_url":null,"source":{"id":"https://openalex.org/S4363607711","display_name":"ICC 2022 - IEEE International Conference on Communications","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2102.11176","pdf_url":"https://arxiv.org/pdf/2102.11176","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2102.11176","pdf_url":"https://arxiv.org/pdf/2102.11176","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1733806262","https://openalex.org/W2126316555","https://openalex.org/W2196646924","https://openalex.org/W2772709170","https://openalex.org/W2803370496","https://openalex.org/W3106530718","https://openalex.org/W3118210634","https://openalex.org/W3120586454"],"related_works":["https://openalex.org/W4400868993","https://openalex.org/W3096874164","https://openalex.org/W3087814763","https://openalex.org/W2937181779","https://openalex.org/W2537866915","https://openalex.org/W2361647908","https://openalex.org/W2357975469","https://openalex.org/W2166117066","https://openalex.org/W2136202932","https://openalex.org/W2089415692"],"abstract_inverted_index":{"In":[0,16],"this":[1,52],"paper,":[2],"a":[3,18,54,81],"proactive":[4],"dynamic":[5],"spectrum":[6],"sharing":[7],"scheme":[8,146],"between":[9,25],"4G":[10],"and":[11,27,42,133],"5G":[12],"systems":[13],"is":[14,67,74,112,116,147],"proposed.":[15,68],"particular,":[17],"controller":[19,79],"decides":[20],"on":[21,61],"the":[22,78,87,100,109,120,128,130,134,144,169],"resource":[23],"split":[24],"NR":[26],"LTE":[28],"every":[29],"subframe":[30],"while":[31,152],"accounting":[32,153],"for":[33,136,154],"future":[34,84,155],"network":[35,47,90,102,138],"states":[36,85,156],"such":[37],"as":[38],"high":[39],"interference":[40],"subframes":[41],"multimedia":[43],"broadcast":[44],"single":[45],"frequency":[46],"(MBSFN)":[48],"subframes.":[49],"To":[50],"solve":[51],"problem,":[53],"deep":[55,71],"reinforcement":[56],"learning":[57],"(RL)":[58],"algorithm":[59],"based":[60],"Monte":[62],"Carlo":[63],"Tree":[64],"Search":[65],"(MCTS)":[66],"The":[69,104,164],"introduced":[70],"RL":[72],"architecture":[73],"trained":[75],"offline":[76],"whereby":[77],"predicts":[80],"sequence":[82,106],"of":[83,86,158],"wireless":[88],"access":[89],"by":[91,118],"simulating":[92],"hypothetical":[93],"bandwidth":[94],"splits":[95],"over":[96],"time":[97],"starting":[98],"from":[99],"current":[101],"state.":[103,139],"action":[105,131],"resulting":[107],"in":[108,161],"best":[110],"reward":[111],"then":[113],"assigned.":[114],"This":[115],"realized":[117],"predicting":[119],"quantities":[121],"most":[122],"directly":[123],"relevant":[124],"to":[125,149],"planning,":[126],"i.e.,":[127],"reward,":[129],"probabilities,":[132],"value":[135],"each":[137,162],"Simulation":[140],"results":[141,165],"show":[142,167],"that":[143,168],"proposed":[145,170],"able":[148],"take":[150],"actions":[151],"instead":[157],"being":[159],"greedy":[160],"subframe.":[163],"also":[166],"framework":[171],"improves":[172],"system-level":[173],"performance.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3192220534","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":3}],"updated_date":"2025-01-20T09:02:08.632436","created_date":"2021-08-16"}