{"id":"https://openalex.org/W2543953525","doi":"https://doi.org/10.1109/icawst.2013.6765434","title":"Factored language modeling for Russian LVCSR","display_name":"Factored language modeling for Russian LVCSR","publication_year":2013,"publication_date":"2013-11-01","ids":{"openalex":"https://openalex.org/W2543953525","doi":"https://doi.org/10.1109/icawst.2013.6765434","mag":"2543953525"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icawst.2013.6765434","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069801139","display_name":"Daria Vazhenina","orcid":null},"institutions":[{"id":"https://openalex.org/I141591182","display_name":"University of Aizu","ror":"https://ror.org/02pg0e883","country_code":"JP","type":"education","lineage":["https://openalex.org/I141591182"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Daria Vazhenina","raw_affiliation_strings":["Human Interface Laboratory, The University of Aizu, Japan"],"affiliations":[{"raw_affiliation_string":"Human Interface Laboratory, The University of Aizu, Japan","institution_ids":["https://openalex.org/I141591182"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5039443541","display_name":"Konstantin Markov","orcid":"https://orcid.org/0000-0003-1838-4789"},"institutions":[{"id":"https://openalex.org/I141591182","display_name":"University of Aizu","ror":"https://ror.org/02pg0e883","country_code":"JP","type":"education","lineage":["https://openalex.org/I141591182"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Konstantin Markov","raw_affiliation_strings":["Human Interface Laboratory, The University of Aizu, Japan"],"affiliations":[{"raw_affiliation_string":"Human Interface Laboratory, The University of Aizu, Japan","institution_ids":["https://openalex.org/I141591182"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.161,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.54599,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"205","last_page":"211"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/perplexity","display_name":"Perplexity","score":0.93179536},{"id":"https://openalex.org/keywords/word-error-rate","display_name":"Word error rate","score":0.6271017},{"id":"https://openalex.org/keywords/russian-language","display_name":"Russian language","score":0.47249356},{"id":"https://openalex.org/keywords/factor","display_name":"Factor (programming language)","score":0.4535566}],"concepts":[{"id":"https://openalex.org/C100279451","wikidata":"https://www.wikidata.org/wiki/Q372193","display_name":"Perplexity","level":3,"score":0.93179536},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8242327},{"id":"https://openalex.org/C137293760","wikidata":"https://www.wikidata.org/wiki/Q3621696","display_name":"Language model","level":2,"score":0.76828516},{"id":"https://openalex.org/C2777601683","wikidata":"https://www.wikidata.org/wiki/Q6499736","display_name":"Vocabulary","level":2,"score":0.7158038},{"id":"https://openalex.org/C40969351","wikidata":"https://www.wikidata.org/wiki/Q3516228","display_name":"Word error rate","level":2,"score":0.6271017},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.60129523},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5791689},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.56961393},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.56224084},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.49597797},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.48345932},{"id":"https://openalex.org/C2993748607","wikidata":"https://www.wikidata.org/wiki/Q7737","display_name":"Russian language","level":2,"score":0.47249356},{"id":"https://openalex.org/C2781039887","wikidata":"https://www.wikidata.org/wiki/Q1391724","display_name":"Factor (programming language)","level":2,"score":0.4535566},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.21574807},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08584431},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.08183035},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icawst.2013.6765434","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.81,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W105371041","https://openalex.org/W126222424","https://openalex.org/W1571785066","https://openalex.org/W1992874062","https://openalex.org/W2056250865","https://openalex.org/W2090736795","https://openalex.org/W2090750282","https://openalex.org/W2103589071","https://openalex.org/W2155033295","https://openalex.org/W2172083727","https://openalex.org/W2182508908","https://openalex.org/W2407405398","https://openalex.org/W2548001695","https://openalex.org/W72347498","https://openalex.org/W80018330","https://openalex.org/W88081813"],"related_works":["https://openalex.org/W4322096525","https://openalex.org/W4281893144","https://openalex.org/W2551914602","https://openalex.org/W2252095989","https://openalex.org/W2169518243","https://openalex.org/W2151348424","https://openalex.org/W2105076537","https://openalex.org/W2050138804","https://openalex.org/W2020757772","https://openalex.org/W1494910745"],"abstract_inverted_index":{"The":[0],"Russian":[1,26,71],"language":[2,30,43,72],"is":[3,27,128],"characterized":[4],"by":[5],"very":[6],"flexible":[7],"word":[8,39,115],"order,":[9],"which":[10,34,121],"limits":[11],"the":[12,15,23,49,53,67,70,79,90,104,131],"ability":[13],"of":[14,51,55,66,81],"standard":[16],"n-grams":[17],"to":[18,36,88,112,124],"capture":[19],"important":[20],"regularities":[21],"in":[22],"data.":[24],"Moreover,":[25],"highly":[28],"inflectional":[29],"with":[31,48,130],"rich":[32,57],"morphology,":[33],"leads":[35],"high":[37],"out-of-vocabulary":[38],"rates.":[40],"Recently":[41],"factored":[42],"model":[44],"(FLM)":[45],"was":[46],"proposed":[47],"aim":[50],"addressing":[52],"problems":[54],"morphologically":[56],"languages.":[58],"In":[59],"this":[60],"paper,":[61],"we":[62],"describe":[63],"our":[64],"implementation":[65],"FLM":[68,101,127],"for":[69],"automatic":[73],"speech":[74],"recognition":[75],"(ASR).":[76],"We":[77],"investigated":[78],"effect":[80],"different":[82],"factors,":[83],"and":[84,94],"propose":[85],"a":[86],"strategy":[87],"find":[89],"best":[91],"factor":[92],"set":[93],"back-off":[95],"path.":[96],"Evaluation":[97],"experiments":[98],"showed":[99],"that":[100],"can":[102],"decrease":[103],"perplexity":[105],"as":[106,108],"much":[107],"20%.":[109],"This":[110],"allows":[111],"achieve":[113],"4.0%":[114],"error":[116],"rate":[117],"(WER)":[118],"relative":[119],"reduction,":[120],"further":[122],"increases":[123],"6.9%":[125],"when":[126],"interpolated":[129],"conventional":[132],"3-gram":[133],"LM.":[134]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2543953525","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2014,"cited_by_count":1}],"updated_date":"2025-01-16T17:25:03.350530","created_date":"2016-11-04"}