{"id":"https://openalex.org/W4372348409","doi":"https://doi.org/10.1109/icassp49357.2023.10096191","title":"Robust M-Estimation Based Distributed Expectation Maximization Algorithm with Robust Aggregation","display_name":"Robust M-Estimation Based Distributed Expectation Maximization Algorithm with Robust Aggregation","publication_year":2023,"publication_date":"2023-05-05","ids":{"openalex":"https://openalex.org/W4372348409","doi":"https://doi.org/10.1109/icassp49357.2023.10096191"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096191","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1109/icassp49357.2023.10096191","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015040771","display_name":"Christian A. Schroth","orcid":"https://orcid.org/0000-0002-5480-5141"},"institutions":[{"id":"https://openalex.org/I31512782","display_name":"Technical University of Darmstadt","ror":"https://ror.org/05n911h24","country_code":"DE","type":"education","lineage":["https://openalex.org/I31512782"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Christian A. Schroth","raw_affiliation_strings":["Technische Universität,Signal Processing Group,Darmstadt,Germany"],"affiliations":[{"raw_affiliation_string":"Technische Universität,Signal Processing Group,Darmstadt,Germany","institution_ids":["https://openalex.org/I31512782"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083805703","display_name":"Stefan Vlaski","orcid":"https://orcid.org/0000-0002-0616-3076"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Stefan Vlaski","raw_affiliation_strings":["Department of Electrical and Electronic Engineering, Imperial College, London, UK"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Electronic Engineering, Imperial College, London, UK","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001328562","display_name":"Abdelhak M. Zoubir","orcid":"https://orcid.org/0000-0002-4409-7743"},"institutions":[{"id":"https://openalex.org/I31512782","display_name":"Technical University of Darmstadt","ror":"https://ror.org/05n911h24","country_code":"DE","type":"education","lineage":["https://openalex.org/I31512782"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Abdelhak M. Zoubir","raw_affiliation_strings":["Technische Universität,Signal Processing Group,Darmstadt,Germany"],"affiliations":[{"raw_affiliation_string":"Technische Universität,Signal Processing Group,Darmstadt,Germany","institution_ids":["https://openalex.org/I31512782"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.969,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.471709,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9967,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9909,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.8510901},{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.55225766},{"id":"https://openalex.org/keywords/consensus-algorithm","display_name":"Consensus algorithm","score":0.44473246},{"id":"https://openalex.org/keywords/robust-statistics","display_name":"Robust Statistics","score":0.44465262}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.8510901},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.8003942},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77751946},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.63757944},{"id":"https://openalex.org/C130120984","wikidata":"https://www.wikidata.org/wiki/Q2835898","display_name":"Distributed algorithm","level":2,"score":0.5805603},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.55225766},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.50836056},{"id":"https://openalex.org/C2983222225","wikidata":"https://www.wikidata.org/wiki/Q2994424","display_name":"Consensus algorithm","level":2,"score":0.44473246},{"id":"https://openalex.org/C67226441","wikidata":"https://www.wikidata.org/wiki/Q1665389","display_name":"Robust statistics","level":3,"score":0.44465262},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35471284},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.31526208},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.23879263},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.21951014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.20701599},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10138479},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096191","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp49357.2023.10096191","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.52,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1506806321","https://openalex.org/W194034371","https://openalex.org/W1999177119","https://openalex.org/W2077321682","https://openalex.org/W2092883204","https://openalex.org/W2104924323","https://openalex.org/W2158307424","https://openalex.org/W2168175751","https://openalex.org/W2600434153","https://openalex.org/W2786049927","https://openalex.org/W2889050973","https://openalex.org/W2942276578","https://openalex.org/W2992352169","https://openalex.org/W3021167987","https://openalex.org/W3038452799","https://openalex.org/W3038677730","https://openalex.org/W3101159567","https://openalex.org/W3107476107","https://openalex.org/W3184417486","https://openalex.org/W4211079158","https://openalex.org/W4213446860","https://openalex.org/W4225309593","https://openalex.org/W4238202755","https://openalex.org/W4297687186","https://openalex.org/W4301295444","https://openalex.org/W4312799084","https://openalex.org/W747911303"],"related_works":["https://openalex.org/W73199774","https://openalex.org/W4372348409","https://openalex.org/W4232379160","https://openalex.org/W4210813465","https://openalex.org/W415204663","https://openalex.org/W2945347109","https://openalex.org/W2807702091","https://openalex.org/W2170905369","https://openalex.org/W2153540526","https://openalex.org/W2144549254"],"abstract_inverted_index":{"Distributed":[0],"networks":[1,16],"are":[2,17,27],"widely":[3],"used":[4],"in":[5,53],"industrial":[6],"and":[7,38,86],"consumer":[8],"applications.":[9],"As":[10],"the":[11,31,54,103,105],"communication":[12],"capabilities":[13],"of":[14,29,34],"such":[15],"usually":[18],"limited,":[19],"it":[20],"is":[21,81,88],"important":[22],"to":[23,48,84],"develop":[24],"algorithms":[25,46],"which":[26,80,96],"capable":[28],"handling":[30],"vast":[32],"amount":[33],"data":[35,93],"processing":[36],"locally":[37],"only":[39],"communicate":[40],"some":[41],"aggregated":[42],"value.":[43],"Additionally,":[44],"these":[45],"have":[47],"be":[49],"robust":[50,67,92],"against":[51,99],"outliers":[52,85],"data,":[55],"as":[56,58],"well":[57],"faulty":[59],"or":[60],"malicious":[61,100],"nodes.":[62,101],"Thus,":[63],"we":[64],"propose":[65],"a":[66,91],"distributed":[68],"expectation":[69],"maximization":[70],"(EM)":[71],"algorithm":[72,107],"based":[73],"on":[74],"Real":[75],"Elliptically":[76],"Symmetric":[77],"(RES)":[78],"distributions,":[79],"highly":[82],"adaptive":[83],"moreover":[87],"combined":[89],"with":[90],"aggregation":[94],"step":[95],"provides":[97],"robustness":[98],"In":[102],"simulations,":[104],"proposed":[106],"shows":[108],"its":[109],"effectiveness":[110],"over":[111],"non-robust":[112],"methods.":[113]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4372348409","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2025-01-16T18:24:50.580864","created_date":"2023-05-07"}