{"id":"https://openalex.org/W4392903498","doi":"https://doi.org/10.1109/icassp48485.2024.10448100","title":"Learning Hybrid Negative Probability Model for Weakly-Supervised Whole Slide Image Recognition","display_name":"Learning Hybrid Negative Probability Model for Weakly-Supervised Whole Slide Image Recognition","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4392903498","doi":"https://doi.org/10.1109/icassp48485.2024.10448100"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448100","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1109/icassp48485.2024.10448100","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5062696252","display_name":"Yining Qiu","orcid":null},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yining Qiu","raw_affiliation_strings":["School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100674060","display_name":"Yuxi Li","orcid":"https://orcid.org/0000-0003-1556-598X"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuxi Li","raw_affiliation_strings":["Tencent Youtu Lab, China"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025002931","display_name":"Jiafu Wu","orcid":"https://orcid.org/0000-0002-1036-5076"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiafu Wu","raw_affiliation_strings":["School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075598739","display_name":"Zhenye Gan","orcid":"https://orcid.org/0000-0002-2431-1159"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenye Gan","raw_affiliation_strings":["Tencent Youtu Lab, China"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057267422","display_name":"Mingmin Chi","orcid":null},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingmin Chi","raw_affiliation_strings":["School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China","Zhongshan PoolNet Technology Co., Ltd, Zhongshan Fudan Joint Innovation Center, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Shanghai Key Laboratory of Data Science, Fudan University, China","institution_ids":["https://openalex.org/I24943067"]},{"raw_affiliation_string":"Zhongshan PoolNet Technology Co., Ltd, Zhongshan Fudan Joint Innovation Center, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028731909","display_name":"Yabiao Wang","orcid":"https://orcid.org/0000-0002-6592-8411"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]},{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yabiao Wang","raw_affiliation_strings":["Tencent Youtu Lab, China","Zhejiang University, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, China","institution_ids":["https://openalex.org/I76130692"]},{"raw_affiliation_string":"Tencent Youtu Lab, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023834700","display_name":"Chengjie Wang","orcid":"https://orcid.org/0000-0003-4216-8090"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chengjie Wang","raw_affiliation_strings":["Tencent Youtu Lab, China"],"affiliations":[{"raw_affiliation_string":"Tencent Youtu Lab, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100462619","display_name":"Pei Wang","orcid":"https://orcid.org/0000-0001-9066-3948"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pei Wang","raw_affiliation_strings":["NAOC CAS, China"],"affiliations":[{"raw_affiliation_string":"NAOC CAS, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1551","last_page":"1555"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12859","display_name":"Cell Image Analysis Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1304","display_name":"Biophysics"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.717559}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7287183},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.717559},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70189464},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.5532618},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5395692},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52761483},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.47802863},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.4530312},{"id":"https://openalex.org/C197055811","wikidata":"https://www.wikidata.org/wiki/Q207522","display_name":"Probability density function","level":2,"score":0.44199005},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.42172602},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.4176785},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16905755},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.085097164},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448100","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448100","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W2108598243","https://openalex.org/W2194775991","https://openalex.org/W2531327146","https://openalex.org/W2560886373","https://openalex.org/W2772723798","https://openalex.org/W2785934082","https://openalex.org/W2951883849","https://openalex.org/W2956228567","https://openalex.org/W3004374095","https://openalex.org/W3094502228","https://openalex.org/W3107410755","https://openalex.org/W3126827997","https://openalex.org/W3132799678","https://openalex.org/W3135547872","https://openalex.org/W3176719058","https://openalex.org/W3211647829","https://openalex.org/W4224303442","https://openalex.org/W4224917531","https://openalex.org/W4283219407","https://openalex.org/W4312765357","https://openalex.org/W4313065529","https://openalex.org/W4386076358"],"related_works":["https://openalex.org/W4386081464","https://openalex.org/W4205762803","https://openalex.org/W3207332793","https://openalex.org/W3197833032","https://openalex.org/W3113278055","https://openalex.org/W2750709484","https://openalex.org/W2535856026","https://openalex.org/W2499612753","https://openalex.org/W2265065644","https://openalex.org/W2105642232"],"abstract_inverted_index":{"Classifying":[0],"an":[1],"entire":[2],"Whole":[3],"Slide":[4],"Image":[5],"(WSI)":[6],"in":[7,66,77,121],"a":[8,60,87,93,111],"single":[9],"forward":[10],"pass":[11],"is":[12],"challenging":[13],"due":[14],"to":[15,26,34,98,115,138],"its":[16],"vast":[17],"resolution.":[18],"Consequently,":[19],"current":[20],"effort":[21],"on":[22,126],"WSI":[23,129],"classification":[24],"resorts":[25],"multiple":[27],"instance":[28,47],"learning":[29],"(MIL),":[30],"using":[31],"patch-wise":[32],"instances":[33],"predict":[35],"categories":[36],"under":[37],"image-wise":[38],"supervision.":[39],"However,":[40],"recent":[41],"MIL":[42,89,108,141],"methods":[43],"usually":[44],"follow":[45],"implicit":[46],"selection":[48,119],"strategy":[49],"and":[50,68,85,143],"ignore":[51],"the":[52],"effect":[53],"from":[54,82],"inherent":[55],"patch":[56,118],"category":[57],"imbalances.":[58],"In":[59],"statistical":[61],"sense,":[62],"negative":[63,95],"patches":[64],"dominate":[65],"WSIs":[67],"provide":[69],"sufficient":[70],"samples":[71],"for":[72],"accurate":[73],"density":[74],"estimation.":[75],"Therefore,":[76],"this":[78],"paper,":[79],"we":[80],"learn":[81],"anomaly":[83],"detection":[84],"propose":[86],"deep":[88],"framework":[90],"which":[91],"learns":[92],"hybrid":[94],"probability":[96],"model":[97],"bootstrap":[99],"discovery":[100],"of":[101,128],"potential":[102],"positive":[103,122],"lesion.":[104],"We":[105],"associate":[106],"attention-based":[107,140],"approach":[109],"with":[110],"regularization":[112],"loss":[113],"function":[114],"explicitly":[116],"improve":[117],"process":[120],"images.":[123],"Experiments":[124],"conducted":[125],"benchmarks":[127],"recognition":[130],"demonstrate":[131],"that":[132],"our":[133],"method":[134],"brings":[135],"significant":[136],"improvement":[137],"classic":[139],"baseline":[142],"achieves":[144],"state-of-the-art":[145],"performance.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392903498","counts_by_year":[],"updated_date":"2024-12-24T02:49:31.975638","created_date":"2024-03-19"}