{"id":"https://openalex.org/W4392902871","doi":"https://doi.org/10.1109/icassp48485.2024.10448037","title":"CAG-FPN: Channel Self-Attention Guided Feature Pyramid Network for Object Detection","display_name":"CAG-FPN: Channel Self-Attention Guided Feature Pyramid Network for Object Detection","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4392902871","doi":"https://doi.org/10.1109/icassp48485.2024.10448037"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448037","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1109/icassp48485.2024.10448037","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103835960","display_name":"Jie Chang","orcid":null},"institutions":[{"id":"https://openalex.org/I2722730","display_name":"Inner Mongolia University","ror":"https://ror.org/0106qb496","country_code":"CN","type":"education","lineage":["https://openalex.org/I2722730"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jie Chang","raw_affiliation_strings":["Inner Mongolia University, Huhhot, China"],"affiliations":[{"raw_affiliation_string":"Inner Mongolia University, Huhhot, China","institution_ids":["https://openalex.org/I2722730"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046916582","display_name":"Huhe Dai","orcid":"https://orcid.org/0009-0001-6156-0445"},"institutions":[{"id":"https://openalex.org/I2722730","display_name":"Inner Mongolia University","ror":"https://ror.org/0106qb496","country_code":"CN","type":"education","lineage":["https://openalex.org/I2722730"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huhe Dai","raw_affiliation_strings":["Inner Mongolia University, Huhhot, China"],"affiliations":[{"raw_affiliation_string":"Inner Mongolia University, Huhhot, China","institution_ids":["https://openalex.org/I2722730"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044357289","display_name":"Yuan Zheng","orcid":"https://orcid.org/0000-0002-8630-1917"},"institutions":[{"id":"https://openalex.org/I2722730","display_name":"Inner Mongolia University","ror":"https://ror.org/0106qb496","country_code":"CN","type":"education","lineage":["https://openalex.org/I2722730"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuan Zheng","raw_affiliation_strings":["Inner Mongolia University, Huhhot, China"],"affiliations":[{"raw_affiliation_string":"Inner Mongolia University, Huhhot, China","institution_ids":["https://openalex.org/I2722730"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.463,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.999951,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"9616","last_page":"9620"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pyramid","display_name":"Pyramid (geometry)","score":0.77158797},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.64913976},{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.5770283}],"concepts":[{"id":"https://openalex.org/C142575187","wikidata":"https://www.wikidata.org/wiki/Q3358290","display_name":"Pyramid (geometry)","level":2,"score":0.77158797},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76869226},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.64913976},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.6004611},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.5948577},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.5770283},{"id":"https://openalex.org/C2781238097","wikidata":"https://www.wikidata.org/wiki/Q175026","display_name":"Object (grammar)","level":2,"score":0.53693753},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.53049445},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44974098},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42242134},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34397614},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.336653},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.088447124},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.08828661},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.087515324},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448037","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10448037","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W2565639579","https://openalex.org/W2752782242","https://openalex.org/W2963150697","https://openalex.org/W2963351448","https://openalex.org/W2963857746","https://openalex.org/W2964241181","https://openalex.org/W2982770724","https://openalex.org/W3028147364","https://openalex.org/W3034307881","https://openalex.org/W3138958001","https://openalex.org/W3162418282","https://openalex.org/W3176839087","https://openalex.org/W3177052299","https://openalex.org/W4205334590","https://openalex.org/W4214666412","https://openalex.org/W4288325606","https://openalex.org/W4289752563","https://openalex.org/W4297810817","https://openalex.org/W4322747009","https://openalex.org/W4391307079","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W44395729","https://openalex.org/W43109613","https://openalex.org/W4249847449","https://openalex.org/W3162204513","https://openalex.org/W3083152911","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Feature":[0,59],"Pyramid":[1,60],"Network":[2,61],"(FPN)":[3],"plays":[4],"a":[5,38,54,67],"critical":[6],"role":[7],"and":[8,124,136],"is":[9,89,143],"indispensable":[10],"for":[11,91],"object":[12,92],"detection":[13,74],"methods.":[14],"In":[15,48],"recent":[16],"years,":[17],"attention":[18],"mechanism":[19],"has":[20,66],"been":[21],"utilized":[22],"to":[23,27,82],"improve":[24],"FPN":[25,33],"due":[26],"its":[28],"excellent":[29],"performance.":[30],"Existing":[31],"attention-based":[32],"methods":[34],"generally":[35],"work":[36],"with":[37],"complex":[39],"structure,":[40],"resulting":[41],"in":[42],"an":[43,101],"increase":[44],"of":[45,50,104,108,139],"computational":[46],"costs.":[47],"view":[49],"this,":[51],"we":[52],"propose":[53],"novel":[55],"Channel":[56],"Self-Attention":[57],"Guided":[58],"(CAG-FPN),":[62],"which":[63],"not":[64],"only":[65],"simple":[68],"structure":[69],"but":[70],"also":[71],"consistently":[72],"improves":[73],"accuracy.":[75],"We":[76],"observe":[77],"that":[78],"introducing":[79],"channel":[80],"self-attention":[81],"the":[83,86,105,111,134],"features":[84],"at":[85,145],"highest":[87],"level":[88],"helpful":[90],"detection,":[93],"since":[94],"modeling":[95],"long-range":[96],"dependencies":[97],"between":[98],"channels":[99],"triggers":[100],"implicit":[102],"clustering":[103],"same":[106],"categories":[107],"objects,":[109],"enhancing":[110],"semantic":[112],"continuity.":[113],"Moreover,":[114],"our":[115,140],"CAG-FPN":[116],"can":[117],"be":[118],"readily":[119],"plugged":[120],"into":[121],"both":[122],"one-stage":[123],"two-stage":[125],"FPN-based":[126],"detectors.":[127],"Experiments":[128],"on":[129],"MS":[130],"COCO":[131],"dataset":[132],"verify":[133],"superiority":[135],"generalization":[137],"ability":[138],"CAG-FPN.":[141],"Code":[142],"available":[144],"https://github.com/ZY-IMU-CV/CAGFPN_CJ_2023.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392902871","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-12-29T21:41:33.551456","created_date":"2024-03-19"}