{"id":"https://openalex.org/W4392903793","doi":"https://doi.org/10.1109/icassp48485.2024.10446524","title":"Boundary-Driven Active Learning for Anomaly Detection in Time Series Data Streams","display_name":"Boundary-Driven Active Learning for Anomaly Detection in Time Series Data Streams","publication_year":2024,"publication_date":"2024-03-18","ids":{"openalex":"https://openalex.org/W4392903793","doi":"https://doi.org/10.1109/icassp48485.2024.10446524"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446524","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":"https://doi.org/10.1109/icassp48485.2024.10446524","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100586609","display_name":"Xiaohui Zhou","orcid":null},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaohui Zhou","raw_affiliation_strings":["National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100429826","display_name":"Yijie Wang","orcid":"https://orcid.org/0000-0002-2913-4016"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yijie Wang","raw_affiliation_strings":["National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091676049","display_name":"Hongzuo Xu","orcid":"https://orcid.org/0000-0001-8074-1244"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongzuo Xu","raw_affiliation_strings":["National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100335524","display_name":"Ming-Yu Liu","orcid":"https://orcid.org/0000-0002-2239-8975"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"education","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mingyu Liu","raw_affiliation_strings":["National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"National Key Laboratory of Parallel and Distributed Computing College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"6135","last_page":"6139"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hypersphere","display_name":"Hypersphere","score":0.8744515},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.591358},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.5909279}],"concepts":[{"id":"https://openalex.org/C2776562905","wikidata":"https://www.wikidata.org/wiki/Q306610","display_name":"Hypersphere","level":2,"score":0.8744515},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.8457253},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7655321},{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.66916025},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.591358},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.5909279},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.54546493},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.50396794},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.4850887},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.42176348},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4145727},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.4130829},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11588624},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.11114317},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446524","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1109/icassp48485.2024.10446524","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320311687","funder_display_name":"Ministry of Education","award_id":null},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":null},{"funder":"https://openalex.org/F4320330215","funder_display_name":"Natural Science Foundation for Distinguished Young Scholars of Hunan Province","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2123504417","https://openalex.org/W2143559571","https://openalex.org/W2407991977","https://openalex.org/W2800666469","https://openalex.org/W2949848919","https://openalex.org/W2950361482","https://openalex.org/W2963351448","https://openalex.org/W3106543020","https://openalex.org/W3107115304","https://openalex.org/W3113749515","https://openalex.org/W3165716503","https://openalex.org/W3169450514","https://openalex.org/W3170937175","https://openalex.org/W3170981104","https://openalex.org/W4283318673","https://openalex.org/W4285082635","https://openalex.org/W4288335160","https://openalex.org/W4312083476"],"related_works":["https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3190734578","https://openalex.org/W3189286258","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928","https://openalex.org/W1595351371"],"abstract_inverted_index":{"The":[0,135],"key":[1],"to":[2,15,17,41,64,95,100,120,131,144],"anomaly":[3,23,161],"detection":[4,24,162],"in":[5,12,36,73,147],"time":[6],"series":[7],"data":[8,102,123],"streams":[9],"(TSDS)":[10],"lies":[11],"the":[13,46,62,66,111,117,159],"ability":[14,28],"adapt":[16],"evolving":[18],"data.":[19],"Active":[20,84],"learning":[21],"for":[22,86],"has":[25],"shown":[26],"such":[27],"by":[29,44,109],"leveraging":[30],"expert":[31],"feedback.":[32],"However,":[33],"many":[34],"studies":[35],"this":[37],"research":[38],"line":[39],"strive":[40],"optimize":[42],"performance":[43],"exhausting":[45],"query":[47,52],"budget,":[48],"lacking":[49],"consideration":[50],"of":[51],"necessity,":[53],"which":[54],"means":[55],"some":[56],"unnecessary":[57,107],"queries":[58,108],"may":[59],"wrongly":[60],"lead":[61],"model":[63,78],"overfit":[65],"trivial":[67],"information":[68],"and":[69,77,104,125],"incur":[70],"additional":[71],"consumption":[72],"both":[74],"human":[75],"labeling":[76],"execution.":[79],"This":[80],"paper":[81],"proposes":[82],"Boundary-driven":[83],"Learning":[85],"Anomaly":[87],"Detection":[88],"(BALAD).":[89],"BALAD":[90,156],"utilizes":[91],"deep":[92],"one-class":[93],"classification":[94],"construct":[96],"a":[97,126],"hypersphere":[98,118],"boundary":[99,112,119,136],"sense":[101],"abnormality":[103],"filters":[105],"out":[106],"dividing":[110],"region.":[113],"We":[114],"further":[115],"harness":[116],"quantitatively":[121],"measure":[122],"difficulty,":[124],"focal":[127],"loss":[128],"is":[129,137],"introduced":[130],"prioritize":[132],"hard":[133],"samples.":[134],"flexibly":[138],"adapted":[139],"during":[140],"each":[141],"feedback":[142],"iteration":[143],"accommodate":[145],"changes":[146],"TSDS.":[148],"Extensive":[149],"experiments":[150],"on":[151],"six":[152],"datasets":[153],"demonstrate":[154],"that":[155],"significantly":[157],"outperforms":[158],"state-of-the-art":[160],"methods.":[163]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4392903793","counts_by_year":[],"updated_date":"2024-12-14T10:17:09.420527","created_date":"2024-03-19"}