{"id":"https://openalex.org/W4225316871","doi":"https://doi.org/10.1109/icassp43922.2022.9747510","title":"Generalized Matching Pursuits for the Sparse Optimization of Separable Objectives","display_name":"Generalized Matching Pursuits for the Sparse Optimization of Separable Objectives","publication_year":2022,"publication_date":"2022-04-27","ids":{"openalex":"https://openalex.org/W4225316871","doi":"https://doi.org/10.1109/icassp43922.2022.9747510"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp43922.2022.9747510","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5079435585","display_name":"Sebastian Ament","orcid":"https://orcid.org/0000-0001-6316-4633"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"funder","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sebastian Ament","raw_affiliation_strings":["Cornell University,Department of Computer Science,Ithaca,NY,14850"],"affiliations":[{"raw_affiliation_string":"Cornell University,Department of Computer Science,Ithaca,NY,14850","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069030030","display_name":"Carla P. Gomes","orcid":"https://orcid.org/0000-0002-4441-7225"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"funder","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Carla Gomes","raw_affiliation_strings":["Cornell University,Department of Computer Science,Ithaca,NY,14850"],"affiliations":[{"raw_affiliation_string":"Cornell University,Department of Computer Science,Ithaca,NY,14850","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":59},"biblio":{"volume":null,"issue":null,"first_page":"5553","last_page":"5557"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11739","display_name":"Microwave Imaging and Scattering Analysis","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hessian-matrix","display_name":"Hessian matrix","score":0.6169322},{"id":"https://openalex.org/keywords/least-squares-function-approximation","display_name":"Least-squares function approximation","score":0.49467942},{"id":"https://openalex.org/keywords/basis-pursuit","display_name":"Basis pursuit","score":0.48267058}],"concepts":[{"id":"https://openalex.org/C156872377","wikidata":"https://www.wikidata.org/wiki/Q6786281","display_name":"Matching pursuit","level":3,"score":0.7969625},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.63094676},{"id":"https://openalex.org/C203616005","wikidata":"https://www.wikidata.org/wiki/Q620495","display_name":"Hessian matrix","level":2,"score":0.6169322},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.5533417},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.50208116},{"id":"https://openalex.org/C9936470","wikidata":"https://www.wikidata.org/wiki/Q6510405","display_name":"Least-squares function approximation","level":3,"score":0.49467942},{"id":"https://openalex.org/C99217422","wikidata":"https://www.wikidata.org/wiki/Q4867576","display_name":"Basis pursuit","level":4,"score":0.48267058},{"id":"https://openalex.org/C188649462","wikidata":"https://www.wikidata.org/wiki/Q2246261","display_name":"Generalized least squares","level":3,"score":0.45494863},{"id":"https://openalex.org/C169241690","wikidata":"https://www.wikidata.org/wiki/Q7828122","display_name":"Total least squares","level":3,"score":0.42738414},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.41987026},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3638939},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.27899325},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.27703652},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.24022487},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.111041665},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icassp43922.2022.9747510","pdf_url":null,"source":{"id":"https://openalex.org/S4363607702","display_name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320333591","funder_display_name":"Multidisciplinary University Research Initiative","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1993039222","https://openalex.org/W2012411663","https://openalex.org/W2065829287","https://openalex.org/W2083346837","https://openalex.org/W2091893102","https://openalex.org/W2106294397","https://openalex.org/W2111414067","https://openalex.org/W2112605393","https://openalex.org/W2128659236","https://openalex.org/W2145096794","https://openalex.org/W2149831484","https://openalex.org/W2151693816","https://openalex.org/W2160979406","https://openalex.org/W2163107063","https://openalex.org/W2567115595","https://openalex.org/W2804280820","https://openalex.org/W2806191766","https://openalex.org/W2942300189","https://openalex.org/W2949821931","https://openalex.org/W2962827663","https://openalex.org/W2963586744","https://openalex.org/W3163433893","https://openalex.org/W3170429682","https://openalex.org/W4288625073"],"related_works":["https://openalex.org/W4238243512","https://openalex.org/W2406900273","https://openalex.org/W2294690908","https://openalex.org/W2249469762","https://openalex.org/W2151603916","https://openalex.org/W2108275041","https://openalex.org/W2067642551","https://openalex.org/W1910610070","https://openalex.org/W166234021","https://openalex.org/W156302293"],"abstract_inverted_index":{"Matching":[0,16,174],"pursuit":[1],"algorithms":[2,8,117],"are":[3,39,99],"a":[4,45,102,135],"popular":[5],"family":[6],"of":[7,44,59,71,79,91,106,113,145,155],"for":[9,24,85,128,166],"compressed":[10],"sensing":[11],"and":[12,64,68,81,98,153,162],"feature":[13],"selection.":[14],"Originally,":[15],"Pursuit":[17,175],"(MP)":[18],"was":[19],"proposed":[20],"as":[21,125],"an":[22],"algorithm":[23,158],"the":[25,42,69,95,107,110,114,122,126,129,138,151,156],"least-squares":[26,130],"objective,":[27],"but":[28],"has":[29],"recently":[30],"been":[31],"generalized":[32,72,115,172],"to":[33,137,141,171,181],"arbitrary":[34],"convex":[35],"objectives.":[36,147],"Here,":[37],"we":[38,149],"concerned":[40],"with":[41,121,179],"case":[43],"general":[46],"objective":[47],"that":[48],"is":[49],"separable":[50],"over":[51],"observed":[52],"data":[53],"points,":[54],"which":[55,88,167],"encompasses":[56],"most":[57],"problems":[58,178],"practical":[60],"interest:":[61],"least-squares,":[62,160],"logistic,":[63,161],"robust":[65,163],"regression":[66,164],"problems,":[67,165],"class":[70],"linear":[73],"models.":[74],"We":[75,132],"propose":[76,134],"efficient":[77],"generalizations":[78],"Forward":[80],"Backward":[82],"Stepwise":[83],"Regression":[84],"this":[86],"case,":[87],"take":[89],"advantage":[90],"special":[92],"structure":[93],"in":[94],"Hessian":[96],"matrix":[97],"based":[100],"on":[101,159,177],"locally":[103],"quadratic":[104],"approximation":[105],"objective.":[108,131],"Notably,":[109],"acquisition":[111],"criterion":[112],"stepwise":[116],"can":[118],"be":[119],"computed":[120],"same":[123],"complexity":[124],"ones":[127],"further":[133],"modification":[136],"Newton":[139],"step":[140],"avoid":[142],"saddle":[143],"points":[144],"non-convex":[146],"Lastly,":[148],"demonstrate":[150],"generality":[152],"performance":[154],"forward":[157],"it":[168],"compares":[169],"favorably":[170],"Orthogonal":[173],"(OMP)":[176],"moderate":[180],"large":[182],"condition":[183],"numbers.":[184]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4225316871","counts_by_year":[],"updated_date":"2025-02-25T06:31:14.889635","created_date":"2022-05-05"}